

Response to CO₂ doubling

Transient climate response:

- temperature change during increasing radiative forcing;
- change in global mean surface temperature at CO₂ doubling in a 1% / year scenario. timescale: decade to century

Equilibrium climate sensitivity:

- Temperature response to doubling of CO₂ doubling in equilibrium;
 century to millennium
- Determined by atmospheric feedbacks

Atmospheric feedbacks to warming

Combined water vapour and lapse rate feedback

extremely likely positive

Cloud feedback important for spread in models

'likely' positive

• Albedo Feedback: 'likely' positive

Total Feedback:

positive (very high confidence)

Supporting that equilibrium climate sensitivity extremely likely >1

Estimating Equilibrium Climate Sensitivity and Transient Climate Response

- CMIP5 range
- Model ensembles evaluated against mean climate

Estimates based on observed warming use

- energy balance arguments
- simple models fitted to data

Influenced by climate variability (particularly most likely value)

Equilibrium climate sensitivity estimates

Likely range supported by all lines of evidence

Model fit to observed warming in lower part of likely range; model estimates constrained by mean climate in upper part of the *likely* range)

=> No best estimate possible

ECS is

- likely in the range 1.5°C to 4.5°C (high confidence)
- extremely unlikely less than 1°C (high confidence)
- very unlikely greater than 6°C (medium confidence).

Transient Climate Response: more relevant for next century

The transient climate response (TCR) is *likely* in the range of 1.0°C to 2.5°C (*high confidence*) and *extremely unlikely* greater than 3°C

- ⇒ tightening of upper limit compared to earlier estimates,
- ⇒ slight downward adjustment of lower limit

What has changed compared to earlier results?

Charney range 1979: 2 climate models

AR5: Multiple lines of evidence (paleo, observed climate change, modelling, feedback analysis) support 'likely' range of 1.5 to 4.5 => high confidence

Since AR4:

- Longer record (surface temperature, ocean heat content)
- Less negative aerosol forcing based on improved estimates
- reduced recent warming rate
- methodological changes (prior assumptions)

Transient climate response to cumulative carbon emissions (TCRE)

- Relates transient response of the climate system to cumulative carbon emissions
- global mean surface temperature change per 1000 PgC emitted to the atmosphere

Evidence:

- warming attributable to greenhouse gas increases
- Observed airborne fraction of anthropogenic CO₂ emissions

TCRE is *likely* in the range of 0.8°C to 2.5°C per 1000 PgC

	TAR	AR4	AR5
ECS	Likely range: 1.5 to 4.5°C	likely range: 2.0 to 4.5°C very unlikely <1.5°C — best estimate about 3°C	likely range: 1.5 to 4.5°C extremely unlikely <1.0°C very unlikely >6.0°C —
TCR	Model range 1.1 to 3.1°C	very likely >1.0°C very unlikely >3.0°C	likely range: 1.0 to 2.5°C extremely unlikely >3.0°C
TCRE			<i>likely</i> range: 0.8 to 2.5 °C/1000 PgC

