16:107:544 Modeling of Climatic Change

 

Prerequisite:  At least one graduate course in meteorology, oceanography, or physical geography.  Knowledge of a high-level programming language, such as FORTRAN or C.

 

Required Text:

Peixoto, José P., and Abraham H. Oort, 1992: Physics of Climate, (American Institute of Physics, New York), 520 pp.

There will also be readings handed out in class.

 

Reference Texts:

Hartmann, Dennis L., 1994: Global Physical Climatology, (Academic Press, San Diego), 411 pp.

Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.), 2001: Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, Cambridge), 881 pp. [IPCC Working Group I Third Assessment Report] http://www.grida.no/climate/ipcc_tar/wg1/

McCarthy, James J., Osvaldo F. Canziani, Neil A. Leary, David J. Dokken, and Kasey S. White (eds.), 2001: Climate Change 2001: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, Cambridge), 1032 pp. [IPCC Working Group II Third Assessment Report] http://www.grida.no/climate/ipcc_tar/wg2/

Metz, Bert, Ogunlade Davidson, Rob Swart, and Jiahua Pan (eds.), 2001: Climate Change 2001: Mitigation (Cambridge Univ. Press, Cambridge), 752 pp. [IPCC Working Group III Third Assessment Report] http://www.grida.no/climate/ipcc_tar/wg3/

Washington, Warren M. and Claire L. Parkinson, 2005:  An Introduction to Three-Dimensional Climate Modeling, Second Edition (Univ. Science Books, Mill Valley, CA), 353 pp.

 

Professor Alan Robock, Room 225, Environmental and Natural Resources Building

E-mail:  robock@envsci.rutgers.edu, Phone:  932-9478

 

Professor Georgiy Stenchikov, Room 233, Environmental and Natural Resources Building

E-mail:  gera@envsci.rutgers.edu, Phone:  932-3637

 

Class meets Monday and Wednesday, 3:55-5:15 p.m., Room 223

 

TENTATIVE SCHEDULE

 

Date

Subject

Jan. 18

Introduction

Jan. 23

Lecture: Climate system, global energy balance

Jan. 25

Lab: MAGICC energy balance model

Jan. 30

Lecture: Climate modeling: Why do it?  Types of models

Feb. 1

Lecture: Radiative transfer

Feb. 6

Lecture: Radiative transfer

Feb. 8

Lecture: Convective adjustment

Feb. 13

Lab: Scientific visualization; Radiative-convective models

Feb. 15

Lab: Radiative-convective models

Feb. 20

Lecture: Atmospheric general circulation modeling

Feb. 22

Lecture: Coupled general circulation modeling, flux correction

Feb. 27

Lecture: Climate change experiments, greenhouse gases, aerosols

Mar. 1

Lab: Analyze AMIP output

Mar. 6

Lab: Radiative-convective model greenhouse gas/aerosol runs

Mar. 8

Midterm Exam

     Mar. 13,15

SPRING BREAK

Mar. 20

Lecture: Volcanic eruptions - model calculations

Mar. 22

Lab: Analyze latest SKYHI model outputs

Mar. 27

Lecture: Nuclear winter

Mar. 29

Lab: Nuclear winter experiments with radiative-convective model

Apr. 3

Lecture: Ozone variations and climatic effect

Apr. 5

Lecture: Chemistry of tropospheric and stratospheric ozone

Apr. 10

Lab: Radiative-convective model simulations of ozone changes

Apr. 12

Lecture: Land surface modeling

Apr. 17

Lab: Land surface feedbacks with radiative convective model                        TERM PAPERS DUE

Apr. 19

Lecture: Detection and attribution of anthropogenic forcing

Apr. 24

Lab: Analysis of GFDL control and transient runs

Apr. 26

Term Paper Presentations

May 1

Term Paper Presentations

     

 

Course grade will be determined by:

 

Class participation             15%

Laboratory participation    10%

Laboratory reports            25%

Term paper                       25%   (15% written, 10% oral)

Midterm Exam                  25%

                                       100%

 


Prepared by Alan Robock (robock@envsci.rutgers.edu) - Last updated on January 18, 2006