GeoMIP Special Issue: ACP/ESD

The third GeoMIP special collection is joint between Atmospheric Chemistry and Physics and Earth System Dynamics. Submissions to this special issue closed on July 31st 2022.

The special issue for now contains 21 peer-reviewed publication.


  1. von Hobe, M., Brühl, C., Lennartz, S. T., Whelan, M. E., and Kaushik, A. (2023): Comment on An approach to sulfate geoengineering with surface emissions of carbonyl sulfide by Quaglia et al. (2022) Atmos. Chem. Phys., 23, 6591–6598, https://doi.org/10.5194/acp-23-6591-2023.
    (hyperlink)

  2. Karami, K., Garcia, R., Jacobi, C., Richter, J. H., and Tilmes, S. (2023): The Holton–Tan mechanism under stratospheric aerosol intervention Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023.
    (hyperlink)

  3. Liu, A., Moore, J. C., and Chen, Y. (2023): PInc-PanTher estimates of Arctic permafrost soil carbon under the GeoMIP G6solar and G6sulfur experiments Earth Syst. Dynam., 14, 39-53, https://doi.org/10.5194/esd-14-39-2023.
    (hyperlink)

  4. Chen, Y., Ji, D., Zhang, Q., Moore, J. C., Boucher, O., Jones, A., Lurton, T., Mills, M. J., Niemeier, U., Séférian, R., and Tilmes, S. (2023): Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios Earth Syst. Dynam., 14, 55-79, https://doi.org/10.5194/esd-14-55-2023.
    (hyperlink)

  5. Bednarz, E. M., Visioni, D., Kravitz, B., Jones, A., Haywood, J. M., Richter, J., MacMartin, D. G., and Braesicke, P. (2023), Climate response to off-equatorial stratospheric sulfur injections in three Earth system models - Part 2: Stratospheric and free-tropospheric response Atmos. Chem. Phys., 23, 687-709, https://doi.org/10.5194/acp-23-687-2023.
    (hyperlink)

  6. Visioni, D., Bednarz, E. M., Lee, W. R., Kravitz, B., Jones, A., Haywood, J. M., and MacMartin, D. G. (2023), Climate response to off-equatorial stratospheric sulfur injections in three Earth system models - Part 1: Experimental protocols and surface changes Atmos. Chem. Phys., 23, 663-685,https://doi.org/10.5194/acp-23-663-2023.
    (hyperlink)

  7. Fasullo, J. T. and Richter, J. H. (2023), Dependence of strategic solar climate intervention on background scenario and model physics Atmos. Chem. Phys., 23, 163-182, https://acp.copernicus.org/articles/23/163/2023/.
    (hyperlink)

  8. Wang, J., Moore, J. C., Zhao, L., Yue, C., and Di, Z. (2022), Regional dynamical and statistical downscaling temperature, humidity and wind speed for the Beijing region under stratospheric aerosol injection geoengineering Earth Syst. Dynam., 13, 1625-1640, https://doi.org/10.5194/esd-13-1625-2022.
    (hyperlink)

  9. Tye, M. R., Dagon, K., Molina, M. J., Richter, J. H., Visioni, D., Kravitz, B., and Tilmes, S. (2022), Indices of extremes: geographic patterns of change in extremes and associated vegetation impacts under climate intervention, Earth System Dynamics<, 13, 1233-1257, https://doi.org/10.5194/esd-13-1233-2022.
    (hyperlink)

  10. Haywood, J. M., Jones, A., Johnson, B. T., and McFarlane Smith, W. (2022), Assessing the consequences of including aerosol absorption in potential stratospheric aerosol injection climate intervention strategies, Atmospheric Chemistry and Physics, 22, 6135-6150, https://doi.org/10.5194/acp-22-6135-2022.
    (hyperlink)

  11. Quaglia, I., Visioni, D., Pitari, G., and Kravitz, B. (2022), An approach to sulfate geoengineering with surface emissions of carbonyl sulfide, Atmospheric Chemistry and Physics, 22, 5757-5773, https://doi.org/10.5194/acp-22-5757-2022.
    (hyperlink)

  12. Xie, M., Moore, J. C., Zhao, L., Wolovick, M., and Muri, H. (2022), Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation, Atmospheric Chemistry and Physics, 22, 4581-4597, https://doi.org/10.5194/acp-22-4581-2022.
    (hyperlink)

  13. Tilmes, S., Visioni, D., Jones, A., Haywood, J., Séférian, R., Nabat, P., Boucher, O., Bednarz, E. M., and Niemeier, U. (2022), Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmospheric Chemistry and Physics, 22, 4557-4579, https://doi.org/10.5194/acp-22-4557-2022.
    (hyperlink)

  14. Jones, A., Haywood, J. M., Scaife, A. A., Boucher, O., Henry, M., Kravitz, B., Lurton, T., Nabat, P., Niemeier, U., Séférian, R., Tilmes, S., and Visioni, D. (2022), The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment, Atmospheric Chemistry and Physics, 22, 2999-3016, https://doi.org/10.5194/acp-22-2999-2022.
    (hyperlink)

  15. Visioni, D., Tilmes, S., Bardeen, C., Mills, M., MacMartin, D. G., Kravitz, B., and Richter, J. H. (2022), Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations, Atmospheric Chemistry and Physics, 22, 1739-1756, https://doi.org/10.5194/acp-22-1739-2022.
    (hyperlink)

  16. Zhang, Y., MacMartin, D. G., Visioni, D., and Kravitz, B. (2022), How large is the design space for stratospheric aerosol geoengineering?, Earth System Dynamics, 13, 201-217, https://doi.org/10.5194/esd-13-201-2022.
    (hyperlink)

  17. Laakso, A., Niemeier, U., Visioni, D., Tilmes, S., and Kokkola, H. (2022), Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy - Part 1: Intercomparison of modal and sectional aerosol modules, Atmospheric Chemistry and Physics, 22, 93-118, https://doi.org/10.5194/acp-22-93-2022.
    (hyperlink)

  18. Wood, R. (2021), Assessing the potential efficacy of marine cloud brightening for cooling Earth using a simple heuristic model, Atmospheric Chemistry and Physics, 21, 14507-14533, https://doi.org/10.5194/acp-21-14507-2021.
    (hyperlink)

  19. Visioni, D., MacMartin, D. G., Kravitz, B., Boucher, O., Jones, A., Lurton, T., Martine, M., Mills, M. J., Nabat, P., Niemeier, U., Seferian, R., and Tilmes, S. (2021), Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmospheric Chemistry and Physics, 21, 10039-10063, https://doi.org/10.5194/acp-21-10039-2021.
    (hyperlink)

  20. Franke, H., Niemeier, U., and Visioni, D. (2021), Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species, Atmospheric Chemistry and Physics, 21, 8615-8635, https://doi.org/10.5194/acp-21-8615-2021.
    (hyperlink)

  21. Kravitz, B., MacMartin, D. G., Visioni, D., Boucher, O., Cole, J. N. S., Haywood, J., Jones, A., Lurton, T., Nabat, P., Niemeier, U., Robock, A., Seferian, R., and Tilmes, S. (2021), Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Chemistry and Physics, 21, 4231-4247, https://doi.org/10.5194/acp-21-4231-2021.
    (hyperlink)

  22. Jones, A., Haywood, J. M., Jones, A. C., Tilmes, S., Kravitz, B., and Robock, A. (2021), North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management., Atmospheric Chemistry and Physics, 21, 1287-1304, https://doi.org/10.5194/acp-21-1287-2021.
    (hyperlink)

  23. Xu, Y., Lin, L., Tilmes, S., Dagon, K., Xia, L., Diao, C., Cheng, W., Wang, Z., Simpson, I., and Burnell, L. (2020), Climate engineering to mitigate the projected 21st-century terrestrial drying of the Americas: a direct comparison of carbon capture and sulfur injection, Earth System Dynamics, doi.org/10.5194/esd-11-673-2020.
    (hyperlink)