Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models

Chaochao Gao,1 Alan Robock,1 and Caspar Ammann2

Received 8 April 2008; revised 22 July 2008; accepted 21 August 2008; published 13 December 2008.

[1] Understanding natural causes of climate change is vital to evaluate the relative impacts of human pollution and land surface modification on climate. We have investigated one of the most important natural causes of climate change, volcanic eruptions, by using 54 ice core records from both the Arctic and Antarctica. Our recently collected suite of ice core data, more than double the number of cores ever used before, reduces errors inherent in reconstructions based on a single or small number of cores, which enables us to obtain much higher accuracy in both detection of events and quantification of the radiative effects. We extracted volcanic deposition signals from each ice core record by applying a high-pass loess filter to the time series and examining peaks that exceed twice the 31-year running median absolute deviation. We then studied the spatial pattern of volcanic sulfate deposition on Greenland and Antarctica and combined this knowledge with a new understanding of stratospheric transport of volcanic aerosols to produce a forcing data set as a function of month, latitude, and altitude for the past 1500 years. We estimated the uncertainties associated with the choice of volcanic signal extraction criteria, ice core sulfate deposition to stratospheric loading calibration factor, and the season for the eruptions without a recorded month. We forced an energy balance climate model with this new volcanic forcing data set, together with solar and anthropogenic forcing, to simulate the large-scale temperature response. The results agree well with instrumental observations for the past 150 years and with proxy records for the entire period. Through better characterization of the natural causes of climate change, this new data set will lead to improved prediction of anthropogenic impacts on climate. The new data set of stratospheric sulfate injections from volcanic eruptions for the past 1500 years, as a function of latitude, altitude, and month, is available for download in a format suitable for forcing general circulation models of the climate system.

1. Introduction

[2] The climatic impact induced by volcanic “dust veils” has long been recognized [Lamb, 1970; Toon and Pollack, 1980]. In particular, volcanic sulfates that form in the stratosphere have been identified as the main cause of large-scale climate perturbations, while the effects of volcanic ash are normally short-lived owing to rapid removal. Volcanic aerosol forcing has also been found to be an important cause of observed climate variability in climate model simulations [e.g., Robock, 1981; Gilliland and Schneider, 1984; Crowley, 2000; Ammann et al., 2003; Wigley et al., 2005]. Despite its climatic importance, currently available volcanic forcing indices all have drawbacks, as summarized by Robock and Free [1995]. Both Lamb’s Dust Veil Index (DVI) [Lamb, 1970] and Mitchell’s index [Mitchell, 1970] were based on rather subjective, and at times even climatic, information; the Volcanic Explosivity Index (VEI) [Newhall and Self, 1982] measured the intensity or explosive magnitude of eruptions, a quantity not directly related to the climatic impact potential; the original Sato index [Sato et al., 1993] uses estimates of ejecta volume from Mitchell [1970] for the period 1850–1882, optical extinction data after 1882 (initially from a single, noisy station [Stothers, 1996]), and satellite data for the period after 1979. The recent part of this index may be an improvement over the DVI or VEI as it includes actual observations of the latitudinal and temporal extent of the aerosol clouds; however it lacks consistency of its source data, a deficiency particularly problematic when looking at volcanic influence over long timescales, and only goes back to 1850. Stothers [1996, 2001] improved on this inconsistency and reconstructed a volcanic optical depth index based on pyrheliometric observations for the period 1881–1960 and satellite extinction observation for 1961–1978. A limitation of most of these indices arises from the
fact that events were often only registered when there was a
direct eyewitness report of the eruption from the ground.
Thus, the problem of missing volcanic eruptions is unavoid-
able and becomes increasingly severe as we go farther back
in time, especially in the Southern Hemisphere (SH). More
objective and continuous time series of volcanic eruptions
can be obtained from ice core records, since they are direct

[5] During the past decade, several studies [Robock and
Free, 1995; Zielinski 1995; Crowley 2000; Robertson et al.,
2001; and Ammann et al., 2003, 2007] have attempted to
reconstruct volcanic indices from single or a few ice cores.
Among these indices the record by Crowley [2000], an
update of Crowley and Kim [1999], is the most widely used.
This index is based essentially on two well-dated ice core
records from Greenland, Crête [Hammer, 1980] and GISP2
[Zielinski et al., 1995] with some additional information
embedded using the Arctic-Antarctic comparisons of
Langway et al. [1995]. Ammann et al. [2007] applied a
compilation based on up to 14 high-latitude ice core
records, among which five came from Antarctica. To
combine the individual series into hemispheric composites,
both the Crowley [2000] and Ammann et al. [2007] recon-
structions applied a suite of somewhat subjective, albeit in
principle justifiable, corrections. One necessary correction
involved adjustments in the timescales of the series to
optimize the joint chronology across cores, and to combine
the different types of data (i.e., electric conductivity
measures, dielectric properties of ice, and direct sulfate flux
measurements) they applied an empirical scaling of the
series to selected reference events (Karaktau and Tambora,
respectively). Crowley [2000] additionally applied a damp-
ening factor for very large events (reducing loadings by the
power of 2/3 for events larger than 15 Mt of sulfate) based
on the apparent lack of proportional climate impacts in
some reconstructions. Such a correction can be justified by
the idea that aerosol growth in very large sulfate clouds
might be more efficient [Pinto et al., 1989]. Both recon-
structions also used the assumption that if anomalous sulfate
was found in both hemispheres within a couple of years,
then a common tropical source was likely [see also
Langway et al., 1995]. Crowley and Kim [1999] had tested
the climatic impact of this assumption for unknown events
by comparing a tropical source with two independent high-
latitude events. They found that the effect of such a
misidentification was relatively small. Comparing all avail-
able ice core based series shows general agreement in the
depiction of periods of more intense volcanism. The indi-
vidual peak forcing estimates however differ owing to
different, and often limited, data sources, particularly with
regard to the important direct sulfate measurements [Robock
and Free, 1996]. Owing to the large spatial variability of
volcanic deposition on ice sheets, there is the danger that
reconstructions based on single or a few ice cores may omit
certain events [Zielinski et al., 1995], or they may bias the
estimates of the magnitudes for individual eruptions
[Mosley-Thompson et al., 2003; Traufetter et al., 2004;
Gao et al., 2007]. This points to the importance of using
the largest possible ice core data set to produce a more
reliable volcanic index.

[4] During the past 10 years a large number of new ice
cores have been recovered, and most of these were analyzed
using continuous sulfate measurements [Cole-Dai et al.,
1997, 2000; Sommer et al., 2000; Bigler et al., 2002;
Palmer et al., 2002; Stenni et al., 2002; Budner and
Cole-Dai, 2003; Dixon et al., 2004; Traufetter et al.,
2004; Castellano et al., 2005; Kurbanov et al., 2006]. This
offers the potential for a dramatic improvement in the
reconstruction of a volcanic forcing index over the past
centuries and millennia. We have worked with the interna-
tional ice core community and collected, with their generous
contributions, a total of 53 ice core series with the goal of
developing a comprehensive volcanic forcing time series
targeted at applications for state-of-the-art climate model
simulations. To generate such a series, a few steps have to
be performed.

[5] 1. We extracted the volcanic signals by applying a
high-pass loess filter [Cleveland, 1979; Cleveland and
Devlin, 1988] to remove the background variation, and
examining the potential peaks that exceed a magnitude of
twice the local 31-year running median (2x median absolute
deviation, 2xMAD) [Gao et al., 2006].

[6] 2. We adjusted the dating. As clearly demonstrated by
Gao et al. [2006], prominent ice core signals of less well
documented events, such as the fifteenth century Kuwae
eruption, could be up to 10 years apart. By cross-core
comparison, combined with historical records, we can
narrow down or sometimes pinpoint the year of eruptions
and adjust the chronology of each time series accordingly.
Careful time correction provides not only a cleaner eruption
chronology but also a more precise alignment required for
the quantification of the corresponding magnitudes.

[7] 3. We calculated the Arctic or Antarctic mean volca-
nic sulfate deposition, taking into account the spatial vari-
ation. Mosley-Thompson et al. [2003] found a systematic
relationship between the volcanic sulfate deposition and
accumulation rate in their six PARCA (Program for Arctic
Regional Climate Assesment) ice cores. Gao et al. [2007]
also found, from 44 ice core sulfate records, that the
deposition has a consistent spatial pattern that resembles
the general pattern of precipitation distribution. Taking into
account such systematic spatial differences, Gao et al.
[2007] offered a way to adjust the changing ice core
networks for individual events and to calculate an Arctic
and an Antarctic mean sulfate deposition for large explosive
eruptions during the past millennium.

[8] 4. We converted from ice core deposition to strato-
spheric sulfate loading. Gao et al. [2007] calculated a set of
validation factors from three independent methods: the
radioactive deposition from nuclear bomb tests, satellite
observations of Pinatubo aerosol loading, and climate
temperatures simulations of volcanic sulfate transport and deposi-
tion following the 1783 Laki, 1815 Tambora, 1912 Katmai,
and 1991 Pinatubo eruptions. The stratospheric aerosol
loading we obtained agreed well across the different meth-
ods. Thus, here we retained the conversion factors for high-
and low-latitude events from Gao et al. [2007].

[9] Applying this complete protocol, we obtained a
history of stratospheric volcanic sulfate mass loading for
the past 1500 years. This series can be converted into an
optical perturbation index and further into a radiative
forcing series that can be used in simple energy balance
models. For general circulation models (GCMs), however, a
more detailed data set with latitudinal and vertical informa-
tion on the evolution of the volcanic aerosol clouds is necessary. As recent studies [Robock and Mao, 1992; Robock, 2000; Ammann et al., 2003; Graf et al., 2007] have shown, the seasonal evolution of volcanic aerosols might also be important, particularly because of its impact on winter hemisphere temperature gradients which in turn affect atmospheric circulation [Stenchikov et al., 2002]. Sato et al. [1993] (and updated to present) contains a good compilation of stratospheric volcanic optical depth for the satellite period, but no detailed spatial observations exist prior to the 1970s. Stothers [1996, 2001] extended the latitudinally and temporally dependent optical depth index back to the 1880s.

[10] Because aerosol transport is largely driven by the seasonally changing wind patterns in the stratosphere, a simple transport scheme can be applied. Grieser and Schönwiese [1999] and Ammann et al. [2003, 2007] applied a simple seasonal evolution of aerosol clouds that allows simulation of the spread after any eruption. Ignoring potential modifications due to the phase of the Quasi-Biennial Oscillation (QBO), the resulting mean distribution from such a transport model nevertheless looks realistic and offers the final step in the development of a volcanic data set appropriate for forcing a GCM.

[11] After briefly introducing the ice core time series in section 2, we summarize in section 3 the development of the hemispheric sulfate loading series, and the simulation of temperature response to the volcanic perturbations for the past millennium using an energy balance model in section 4. Section 5 then transforms this mass emissions history into an evolving volcanic mass and forcing data set. Despite the significantly enlarged data set (based on more than double the number of records previously used), there are still remaining uncertainties, discussed in section 6. We then conclude with the Internet link to the new volcanic forcing data set.

2. Ice Core Time Series

[12] Figure 1 shows the ice core time series we have collected, from which one can see that our ice core data cover major parts of both the Greenland and Antarctic ice sheets. We chose 36 of these ice core time series to be used in this study, excluding time series that were too short or that had large gaps. Table 1 lists the general information and references of these 36 ice core time series. The ice core time series are essentially the same as those used by Gao et al. [2007] except that we also included 10 electrical conductivity measurement (ECM) records to build an event chronology as well as to quantify the corresponding magnitude for each eruption with the various ice core time series. To achieve this goal we adapted a two-step procedure, that is, we first used all of the 36 ice core records in concert to pinpoint the timing of each eruption, and then only the actual sulfate records to calculate the magnitude of ice core volcanic sulfate deposition. The reason we choose not to use ECM records in calculating the volcanic deposition is that ECM measures the acidity caused not only by sulfuric acid (H₂SO₄), but also by nitric (HNO₃), hydrochloric (HCl), and hydrofluoric (HF) acids. Besides, the acidity can be reduced by deposition of basic (as contrasted with acidic) aerosol particles; and the values depend on the temperature at the time when the measurement was taken. Nevertheless, strong ECM peaks do indicate the timing of the arrival of volcanic sulfate to the ice.

[13] Just like Gao et al. [2007], we converted all of the actual sulfate records into a flux unit (kg H₂SO₄ km⁻² a⁻¹). We also combined the sulfate deposition for Laki and Tambora from six PARCA (Program for Arctic Regional Climate Assessment) ice cores [Mosley-Thompson et al., 2003] and 12 Greenland ice cores [Clausen and Hammer, 1988] with our ice core results to obtain a more precise estimate of Greenland ice core sulfate deposition. This gave a total of 54 sulfate ice core records, 36 from this study plus six PARCA and 12 from Clausen and Hammer [1988], to be used in this study.

3. Calculation of Stratospheric Volcanic Sulfate Injection

[14] The same procedure for calculating the stratospheric sulfate aerosol injection used by Gao et al. [2007] (also described in section 1) was applied to the 36 ice cores to
Table 1. Ice Core Time Series Used in the Study

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Period</th>
<th>Resolution</th>
<th>Measure Type</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A84</td>
<td>80.7°N, 73.1°W</td>
<td>1223–1961</td>
<td>1/a</td>
<td>ECM</td>
<td>μA</td>
<td>[Fisher et al. 1995]</td>
</tr>
<tr>
<td>A77</td>
<td>80.7°N, 73.1°W</td>
<td>1453–1853</td>
<td>1/a</td>
<td>ECM</td>
<td>μA</td>
<td>[Fisher et al. 1995]</td>
</tr>
<tr>
<td>NGT_B20</td>
<td>79°N, 36.5°W</td>
<td>830–1993</td>
<td>12/a</td>
<td>CFA</td>
<td>ng/g (ppb)</td>
<td>[Bigler et al. 2002]</td>
</tr>
<tr>
<td>NorthGRIP1_ECM</td>
<td>75.1°N, 42.3°W</td>
<td>190–1969</td>
<td>2/a</td>
<td>ECM</td>
<td></td>
<td>[Gao et al. 2006]</td>
</tr>
<tr>
<td>NorthGRIP1_SO4</td>
<td>75.1°N, 42.3°W</td>
<td>190–1969</td>
<td>1/a</td>
<td>Total SO4</td>
<td>μequiv/kg</td>
<td>[Gao et al. 2006]</td>
</tr>
<tr>
<td>GISP2</td>
<td>72.6°N, 38.5°W</td>
<td>1–1984</td>
<td>0.5/a</td>
<td>NSS SO4</td>
<td>ppb</td>
<td>[Zielinski 1995]</td>
</tr>
<tr>
<td>Dye3 deep</td>
<td>72.6°N, 37.6°W</td>
<td>1–1768</td>
<td>4/a</td>
<td>ECM</td>
<td></td>
<td>[Gao et al. 2006]</td>
</tr>
<tr>
<td>Greenland Site T</td>
<td>72.6°N, 38.5°W</td>
<td>1731–1989</td>
<td>1/a</td>
<td>EXS</td>
<td>kg/km²</td>
<td>[Mosley-Thompson et al. 1993]</td>
</tr>
<tr>
<td>GRIP main</td>
<td>71.3°N, 26.7°W</td>
<td>1–1642</td>
<td>4/a</td>
<td>ECM</td>
<td></td>
<td>[Gao et al. 2006]</td>
</tr>
<tr>
<td>GRIP</td>
<td>71.3°N, 37.3°W</td>
<td>553–1778</td>
<td>4/a</td>
<td>ECM</td>
<td></td>
<td>[Gao et al. 2006]</td>
</tr>
<tr>
<td>Greenland Site A</td>
<td>70.8°N, 36.6°W</td>
<td>1715–1985</td>
<td>1/a</td>
<td>EXS</td>
<td>kg/km²</td>
<td>[Mosley-Thompson et al. 1993]</td>
</tr>
<tr>
<td>Renland</td>
<td>70.6°N, 35.8°W</td>
<td>1000–1984</td>
<td>1/a</td>
<td>ECM</td>
<td></td>
<td>[Gao et al. 2006]</td>
</tr>
<tr>
<td>20D</td>
<td>65°N, 45°W</td>
<td>1767–1983</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>ng/g</td>
<td>[Mayewski et al. 1990]</td>
</tr>
<tr>
<td>Mount Logan</td>
<td>60.6°N, 141°W</td>
<td>1689–1979</td>
<td>1/a</td>
<td>total SO4</td>
<td>μequiv/L</td>
<td>[Mayewski et al. 1990]</td>
</tr>
<tr>
<td>Dyer</td>
<td>70.7°S, 65°W</td>
<td>1505–1989</td>
<td>1/a</td>
<td>total SO4 flux</td>
<td>kg/km²</td>
<td>[Cole-Dai et al. 1997]</td>
</tr>
<tr>
<td>GI15</td>
<td>71.2°S, 46°E</td>
<td>1210–1983</td>
<td>varies</td>
<td>DEP</td>
<td>μS/m</td>
<td>[Moore et al. 1991]</td>
</tr>
<tr>
<td>Talos Dome</td>
<td>72.8°S, 159.1°E</td>
<td>1217–1996</td>
<td>varies</td>
<td>NSS SO4</td>
<td>μequiv/L</td>
<td>[Stenni et al. 2002]</td>
</tr>
<tr>
<td>Hercules Névè</td>
<td>73.1°S, 165.5°E</td>
<td>1774–1992</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>μequiv/L</td>
<td>[Stenni et al. 2002]</td>
</tr>
<tr>
<td>Dome C</td>
<td>74.7°S, 124.5°E</td>
<td>1763–1973</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>μequiv/L</td>
<td>[Legrand and Delmas 1987]</td>
</tr>
<tr>
<td>DML_B32_SO4</td>
<td>75°S, 0°W</td>
<td>159–1997</td>
<td>varies</td>
<td>NSS SO4</td>
<td>ng/g</td>
<td>[Tranfetter et al. 2004]</td>
</tr>
<tr>
<td>DML_B35_ECM</td>
<td>75°S, 0°W</td>
<td>159–1997</td>
<td>12/a</td>
<td>NSS-conductivity</td>
<td>μS/cm</td>
<td>[Sommer et al. 2000]</td>
</tr>
<tr>
<td>DML_B33</td>
<td>75°S, 6.5°W</td>
<td>1–1996</td>
<td>123/a</td>
<td>NSS-conductivity</td>
<td>μS/cm</td>
<td>[Sommer et al. 2000]</td>
</tr>
<tr>
<td>DML_B31</td>
<td>75.6°S, 3.5°W</td>
<td>463–1994</td>
<td>12/a</td>
<td>NSS-conductivity</td>
<td>μS/cm</td>
<td>[Sommer et al. 2000]</td>
</tr>
<tr>
<td>Siple Station</td>
<td>76°S, 84.3°W</td>
<td>1417–1983</td>
<td>1/a</td>
<td>Total SO4 flux</td>
<td>kg/km²</td>
<td>[Cole-Dai et al. 1997]</td>
</tr>
<tr>
<td>ITASE 01–5</td>
<td>77°S, 89°W</td>
<td>1781–2002</td>
<td>varies</td>
<td>SO4</td>
<td>μg/L</td>
<td>[Dixon et al. 2004]</td>
</tr>
<tr>
<td>ITASE 00–5</td>
<td>77.7°S, 124°W</td>
<td>1708–2001</td>
<td>varies</td>
<td>SO4</td>
<td>μg/L</td>
<td>[Dixon et al. 2004]</td>
</tr>
<tr>
<td>ITASE 00–4</td>
<td>78°S, 120°W</td>
<td>1799–2001</td>
<td>varies</td>
<td>SO4</td>
<td>μg/L</td>
<td>[Dixon et al. 2004]</td>
</tr>
<tr>
<td>ITASE 01–3</td>
<td>78.1°S, 95.6°W</td>
<td>1859–2002</td>
<td>varies</td>
<td>SO4</td>
<td>μg/L</td>
<td>[Dixon et al. 2004]</td>
</tr>
<tr>
<td>ITASE 00–1</td>
<td>79.4°S, 111°W</td>
<td>1651–2001</td>
<td>varies</td>
<td>SO4</td>
<td>μg/L</td>
<td>[Dixon et al. 2004]</td>
</tr>
<tr>
<td>ITASE 99–1</td>
<td>80.6°S, 122.6°W</td>
<td>1713–2000</td>
<td>varies</td>
<td>SO4</td>
<td>μg/L</td>
<td>[Dixon et al. 2004]</td>
</tr>
<tr>
<td>PSI2</td>
<td>90°N</td>
<td>1010–1984</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>ng/g</td>
<td>[Delmas et al. 1992]</td>
</tr>
<tr>
<td>PSI1</td>
<td>90°N</td>
<td>1800–1984</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>ng/g</td>
<td>[Delmas et al. 1992]</td>
</tr>
<tr>
<td>SP2001c1</td>
<td>90°S</td>
<td>905–1999</td>
<td>1/a</td>
<td>Total SO4 flux</td>
<td>kg/km²</td>
<td>[Budner and Cole-Dai 2003]</td>
</tr>
<tr>
<td>SP95</td>
<td>90°S</td>
<td>1487–1992</td>
<td>varies</td>
<td>SO4</td>
<td>μg/L</td>
<td>[Dixon et al. 2004]</td>
</tr>
</tbody>
</table>

*aECM, electrical conductivity measurement; DEP, dielectric profiling; NSS SO4, non-sea-salt sulfate; CFA, continuous flow analysis; NSS-conductivity, non-sea-salt conductivity; EXS, excess sulfate.
*bUsed by Robock and Free [1995].

calculate the loading time series for the past 1500 years, with only one exception. That is, instead of calculating the local mean deposition of cores that lie close to each other for each eruption, we calculated a set of ratios between the individual core versus Greenland or Antarctic mean deposition and applied these ratios globally to individual ice cores before they were used to calculate the Arctic or Antarctic mean depositions. In particular, we selected five large low-latitude eruptions (1809 Unknown, 1815 Tambora, 1883 Krakatau, 1963 Agung, and 1991 Pinatubo) during the past two centuries and calculated the ratios between the volcanic deposition in individual ice cores and that of the Greenland or Antarctic mean for each event. We then calculated the mean ratio for each ice core time series by simply averaging the five ratios. These mean ratios were then applied to each time series before attempting to calculate the Greenland or Antarctic mean deposition to ensure that, on average, the relative contributions from each core would remain the same. By doing so, we reduce the bias caused by having only a few ice core records available in the early period.

Figure 2 shows the resulting time series of stratospheric volcanic sulfate injection for the Northern Hemisphere (NH), SH, and global average for the past 1500 years. We see that the largest stratospheric sulfate aerosol injection events are the 1259 Unknown, 1453 Kuwae, 1815 Tambora eruptions in tropical regions, and the 1783 Laki eruption at high latitude of the NH. The Kuwae sulfate injection was 1 year later in NH than SH since the peak deposition showed up a year later in Arctic ice cores. We also found a series of moderate to large sulfate injections during the thirteenth century, in 1228, 1259, 1268, 1275 and 1285 C.E. The cumulative volcanic sulfate flux in the thirteenth century was 2 to 10 times larger than that in any other century within the last millennium.

4. Climate Model Simulation of Temperature Response to Volcanic Eruptions

[15] We simulated the effect of volcanic eruptions on climate for the past 1150 years using our new volcanic forcing together with solar and anthropogenic forcing with the upwelling diffusion energy balance model MAGICC (Model for the Assessment of Greenhouse-gas-Induced Climate Change) [Wigley and Raper, 1992, 2001]. MAGICC was used extensively in the third Intergovernmental Panel on Climate Change assessment and has been tested for its ability to produce the volcanic caused climate response against the National Center for Atmospheric Research/U.S. Department of Energy Parallel Climate
Model [Wigley et al., 2005]. The very close agreement found by Wigley et al. justifies the use of MAGICC to obtain reliable estimates of how the climate responds to various volcanic eruptions with some confidence.

The input forcing for MAGICC is the global mean monthly radiative forcing at the top of the atmosphere. Therefore, we converted the stratospheric volcanic aerosol loading (in units of Tg) obtained above into radiative forcing by first dividing the loading by 1.5 \(\times 10^{14} \) g [Stothers, 1984] to obtain the optical depth; then multiplying the optical depth by 20 [Wigley et al., 2005] to obtain the radiative forcing in W m\(^{-2}\). The solar forcing over the past 1000 years was obtained by scaling solar modulation estimates [Muscheler et al., 2007] to a recent solar irradiance reconstruction [Wang et al., 2005]. For anthropogenic forcing we applied the IPCC SRES A1B forcing scenario with median anthropogenic aerosol forcing (Q[2000] = 1.4 W m\(^{-2}\), Tom Wigley, personal communication, 2006). The model was run from 850 C.E. to 2015 C.E. with climate sensitivity set to be 3.0 \(\pm 1.76 \) \(^\circ \)C for doubled CO\(_2\) concentration.

Figure 3 shows the comparison between the model simulated global mean temperature and instrumental observations for the past 150 years. We found a good agreement between the model results and observations. The model accurately simulated the cooling of about 0.2\(^\circ\)–0.3\(^\circ\)C for the three tropical eruptions, 1883 Krakatau, 1963 Agung, and 1991 Pinatubo, during this period. On the other hand, the modeled temperature did not show the sharp warmings in 1878 and the early 1940s. This is because there were large El Niño events then [Brönnimann et al., 2004], which are not included in the energy balance model, and because the temperature drop in August 1945 is the result of errors in the sea surface temperature record, which still need to be corrected in the record we used and all other records [Thompson et al., 2008].

The model also did not produce cooling for the 1982 El Chichón eruption. This is because the El Chichón signal was missed from our ice core-based reconstruction because most of our Arctic ice cores end before or around the 1980s, and owing to the asymmetric distribution of the El Chichón cloud [Robock, 2000], no El Chichón signal was extracted from the Antarctic ice core records. Therefore, in a subsequent MAGICC run we replaced our ice core–based reconstruction with Sato’s [Sato et al., 1993] (and updated to present) values after 1970 and compared the model response to NH temperature reconstructions [Intergovernmental Panel on Climate Change, 2007, Figure 6.10] for the past millennium (Figure 4). The model simulation generally captured the temperature variation on the decade to century timescale: the (sometimes interrupted) mean temperatures between the ninth and twelfth centuries, which were generally warmer than before or after, and only in the nineteenth century reach similarly warm conditions again; the coldest episodes occurring during the thirteenth, fifteenth, and nineteenth centuries; and the exceptionally high temperature after 1850. Several sharp cooling events mark the temper-
The model produced more cooling than the reconstructions for the 1259 Unknown eruption. There could be multiple reasons for this. On the one hand, IV12 may overestimate the forcing for large volcanic eruptions owing to the linear assumption we made between the atmospheric sulfate mass loading and its radiative perturbation [e.g., Pinto et al., 1989]. The model may be too sensitive to volcanic forcing owing to its simplicity. On the other hand, temperature reconstructions also contain significant uncertainties, especially for early periods like the thirteenth century when the data density (spatial sampling) is severely limited. Besides, Robock [2005] showed that temperature response to large explosive volcanic perturbations, for example, the 1453 Kuwae, 1809 Unknown and 1815 Tambora eruptions. The largest volcanic perturbation was estimated to be that from the 1259 Unknown. Together with four other moderate to large sulfate injections during the century, 1228, 1268, 1275 and 1285, this particularly large eruption caused a clear temperature decrease of several tenths of a degree Celsius for the entire thirteenth century. This suggests the role of these temporal closely spaced eruptions may have in century-scale climate variation of that period.

![Figure 3. Global average surface air temperature anomalies, with respect to the 1961–1990 mean, simulated with the Wigley and Raper [1992, 2001] upwelling-diffusion energy balance model (MAGICC) and observed data (from the Climatic Research Unit http://www.cru.uea.ac.uk/cru/data/temperature/).](image)

![Figure 4. MAGICC-simulated NH temperature response (red curve) plotted on top of temperature reconstructions (shaded) and instrumental observations (black curve) (Figure 6.10 of IPCC [2007], used with permission). We plotted smoothed (31-year weighted mean) temperature anomalies with respect to the 1961–1990 mean.](image)
Table 2. Exchange Coefficients for Different Regions

<table>
<thead>
<tr>
<th>Regions</th>
<th>Original Values</th>
<th>Values in This Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropics ↔ tropics</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Tropics ↔ extratropics</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Extratropics ↔ tropics</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Extratropics ↔ extratropics (winter-spring)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Extratropics ↔ extratropics (summer-fall)</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>Extratropics → polar region in spring and fall</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Extratropics → polar region in spring and fall</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Extratropics → extratropics</td>
<td>10/45/28</td>
<td>4</td>
</tr>
</tbody>
</table>

*Given in percentage (%) per month. Original values from Grieser and Schönwiese [1999].

reconstructions based on tree ring records tend to underestimate the cooling following volcanic eruptions because of compensating growth from the diffuse radiation caused by volcanic aerosols. The model temperature also appears to be at the high end of the proxy reconstruction range during the seventeenth and most of the nineteenth century, probably because of the low long-term variations in the solar forcing time series we used.

5. Construction of a Monthly and Spatially Dependent Forcing Index

To produce the monthly and spatially dependent volcanic forcing index we applied the Grieser and Schönwiese [1999] stratospheric transport parameterization to calculate the horizontal spread of aerosol within the low stratosphere plus a latitudinally and temporally dependent function to describe the production and sedimentation of aerosols. We also interpolated the vertical distribution of volcanic aerosols based on information obtained from lidar measurements of the backscattering coefficient after the 1991 Pinatubo eruption [Antuña et al., 2002], assuming that the aerosols from every eruption have the same vertical distribution as Pinatubo.

We divided each hemisphere into eight equal-area latitude belts (three in the tropics, four in the midlatitudes, and one in high latitude) and applied a nonlocal diffusion formalism to describe the horizontal transport of aerosols [Grieser and Schönwiese, 1999]. The transport coefficients among different latitude belts for different seasons are given in Table 2. Compared to Grieser and Schönwiese [1999] we increased the diffusion rate from the tropics to the extratropics and from the extratropics to the polar region, as well as the exchange coefficient within the extratropics during summer and fall to allow more transport of aerosols from low latitudes to high latitudes. The exchange coefficients of Grieser and Schönwiese [1999] were obtained from recent studies of stratospheric mass transport and most of the estimates contain uncertainties. We modified a few of the exchange rates within these uncertainty estimates to increase the spread of aerosols from tropics to high latitudes. Another major difference is that for tropical eruptions we put initial sulfate aerosol in each hemisphere (according to ice core estimates) and only allow the transport within each hemisphere; that is, there is no transport across the equator between the two lowest latitude belts in the tropics. We adopted this approach because for the early eruptions we have no information about the location or season of the eruption and thus about the hemispheric partitioning of the sulfate aerosols. Since the ice core estimates give us relatively accurate estimates of the hemispheric distribution of volcanic aerosols [Gao et al., 2006], we can preserve this information by allowing transport only within the corresponding hemisphere. For eruptions without recorded month of eruption, we assumed that they occurred in April, as was done for the Volcanic Explosivity Index [Simkin and Siebert, 1994]. (The biases that may be introduced by this assumption are discussed in section 6.) Similar to the reconstruction of Crowley [2000] and Ammann et al. [2007], for eruptions without recorded location we assumed a tropical eruption if there are signals in both Arctic and Antarctic ice cores, but a midlatitude to high-latitude eruption if signals were only found in one hemisphere.

To generate the time-dependent data, we assume a linear buildup of the total aerosol mass for 4 months after eruption, leading to a maximum mass loading according to the strength of the eruption. After that we assume an exponential decrease of the stratospheric aerosol mass with a global mean e-folding time of 12 months. Since the major sink mechanism for stratospheric aerosol is stratosphere-troposphere folding in midlatitudes and the Brewer-Dobson circulation related sink in high latitudes [Holton et al., 1995], we assume little loss due to sedimentation in the tropical regions (e-folding time of 36 months) and keep the sedimentation to an average e-folding time of 12 months in the extratropics. In the polar region, we set the e-folding time to be 3 months during winter to account for the strong subsidence in the polar vortex and 6 months for the rest of the year. By applying this latitudinally and seasonally dependent function that describes the production and sedimentation of aerosols, we obtained a distribution of volcanic aerosols in latitude and time. Figure 5 shows an example of the resulting spatial and temporal distribution of the aerosol optical depth during the first 3 years after the Pinatubo eruption in 1991, where we see a linear increase of aerosol loading for the first four months and the seasonal transport to the poles. The result agrees fairly well with the satellite measurement and GCM calculations of Pinatubo optical depth [Stenchikov et al., 1998]. Figure 6 shows the distribution for the 1809 Unknown and 1815 Tambora eruptions, where we can see not only the spread of volcanic aerosol in space and time but also the relative magnitude between the two eruptions. The total sulfate aerosol fluxes in the two polar regions after Tambora (47 kg/km² and 49 kg/km² in the Arctic and Antarctic, respectively) and Pinatubo (13 kg/km² and 15 kg/km² in the Arctic and Antarctic, respectively) are also in general agreement with the ice core observations (59 kg/km² and 51 kg/km² in the Arctic and Antarctic, respectively, for Tambora, and 15 kg/km² for Pinatubo in the Antarctic), which serves as an important confirmation of the reliability of our transport and deposition program, despite its simplicity.

In the next step, we interpolated the vertical distribution of volcanic aerosols using information obtained from 11 lidar measurements of the aerosol backscattering coefficients at 0.525 μm wavelength after the 1991 Pinatubo eruption [Antuña et al., 2002]. For each lidar data set, we first calculated the total column backscattering coefficient for heights from 15 km to 30 km; then we calculated the
ratios between backscattering coefficient for each 0.5 km depth and the total column value. This gives us the vertical distribution of Pinatubo aerosols in the stratosphere for the region. On the basis of visual inspection of radar measurements for the 1963 Agung eruption [Grams and Fiocco, 1967], ground lidar measurement for the 1974 Fuego eruption [McCormick and Fuller, 1975], and aircraft lidar measurement for the 1982 El Chichón eruption [McCormick and Swissler, 1983], the vertical distribution of volcanic aerosols has a similar shape in the stratosphere for these different eruptions, but peak at slightly different heights depending on the height of original ejection. Radiatively it does not make much of a difference in the climatic forcing.

One could do sensitivity studies of this impact in a GCM, but that is beyond the scope of the present study here. Here we present “climatological” evolution of volcanic clouds.

Figure 5. Distribution of total aerosol optical depth for the 1991 Pinatubo eruption from our data set.

Figure 6. Distribution of sulfate aerosol loading from 1809 Unknown and 1815 Tambora eruptions. By comparison, the maximum tropical loading for the 1991 Pinatubo eruption was 132 kg/km².
Then we divided Earth into tropics (0°–30°), mid-latitudes (30°–60°), high latitudes (60°–70°), and polar region (70°–90°), and calculated the regional mean vertical distribution of Pinatubo aerosol by averaging the lidar measurements in the corresponding regions. Finally we applied these four sets of vertical distribution functions to the monthly volcanic aerosol data we obtained above, assuming that each eruption has the same vertical distribution as Pinatubo in the corresponding regions. Figure 7 shows an example of the vertical distribution of volcanic aerosols six months after the Tambora eruption. We see that the center of sulfate aerosols loading shifted from 18–25 km in the tropics to 14–20 km in the midlatitudes. The aerosols were more concentrated in the NH because it was in October and increasing planetary wave activity led to isentropic mixing which enhanced the transport of aerosols into the winter hemisphere. This seasonal variation of wave activity is different between the two hemispheres owing to a different wave spectrum. The ice core sulfate data do not provide enough constraints to quantify this difference, and thus it is beyond the scope of this paper to include such difference into the reconstruction.

6. Uncertainties in the Reconstruction

Gao et al. [2007] listed uncertainties involved in using ice core records as a measure of the volcanic aerosol loading, and the improvements our method made in reducing these uncertainties. Nevertheless, there are still remaining uncertainties. We found spatial variation of about 50% for the 1815 Tambora deposition among both Arctic and Antarctica ice cores, and this number could be substantially larger for less well known or less significant eruptions [Gao et al., 2007]. Through our extensive body of ice core records, we significantly reduced the error associated with the estimations of the ice core volcanic sulfate deposition when compared to previous studies. The number of available ice cores constantly changes from one eruption to another and decreases dramatically for the early period. It is difficult to give a global quantitative estimate of the uncertainty related to the calculation of the ice core mean volcanic sulfate deposition. Further expansion of ice core availability in future studies will help to reduce this uncertainty.

Besides the variation in the ice core deposition, there are uncertainties associated with the assumptions we made during the procedure to estimate the stratospheric aerosol loading, such as the choice of (1) twice the 31-year running median absolute deviation as the threshold to extract the volcanic signals (called 31pts+2MAD hereafter) and (2) April as the month of eruption. To test the sensitivity to these assumptions in our reconstruction, we applied different choices of the above assumptions to the ice core records for the period from 1801 to 2000, keeping other procedures the same. The time frame was chosen because this is the period where we have the most ice core records and also several moderate to large volcanic events.

6.1. Uncertainty Associated With Different Signal Extraction Criteria and Calibration Factors

To estimate the sensitivity of the threshold and window length in the volcanic signal extraction procedure, we first changed the threshold to be 1.5MAD and 3MAD respectively while keeping the window length as 31 years; then we changed the window length to be 11, 51, and 101
years, respectively, while keeping the threshold as 2MAD. This gives us six different sets of criteria including the original set. Applying these six sets of criteria to the ice core records for the past 200 years, we found that the different criteria do not significantly change either the detection of signals or their magnitude for moderate to larger volcanic eruptions (Figure 8). The 31pts+1.5MAD criterion picked up some additional signals as compared to the other methods. All of these additional signals are very small and we suspect that they are either false volcanic signals or not climatically significant. The El Chichón signal appears to be sensitive to the choice of the threshold (Figure 8, top) because most of our Arctic ice core records end before or around the 1980s and because the signals become more difficult to distinguish from the background toward the end. The El Chichón signal is missing from our Antarctic cores for almost all choices of criteria because of its very asymmetric hemispheric distribution, with almost all of the cloud staying in the NH [Robock, 2000]. The 11pts+2MAD criterion usually gave a lower estimate of sulfate loading for eruptions closely following another event, because it tends to filter out the decadal signal produced by consecutive eruptions as the background variation. Therefore, we disregard the 11pts+2MAD criterion from further calculation and discussion. The coefficient of variance among the five criteria is as small as 4% for large eruptions like Tambora in 1815, and it increases to about 10% for moderate eruptions such as Krakatau in 1883 (Table 3). Gao et al. [2006] described why we chose 31pts+2MAD as our signal extraction criteria. Here we found that the estimated sulfate loading and the corresponding climate impacts are insensitive to the criteria chosen within a reasonable range, and the maximum uncertainty associated with the different choice of criteria is about 10%.

6.2. Uncertainty Associated With Eruptions Occurring in Different Seasons

[29] The assumption of April as the time of eruption may introduce additional uncertainty because the seasonality of volcanic emission can affect its atmospheric transport and deposition in different latitudes. Since we were using a stratospheric transport parameterization to simulate the real work activity, we evaluated the uncertainty associated with
this seasonality assumption in this parameterization program. In particular, we set the eruption time to be January, April, July and October representing winter, spring, summer, and fall (NH) eruptions, respectively, and ran the transport program with each setting. We assessed the difference in the high-latitude volcanic sulfate deposition because this may reflect the uncertainty associated with our calculation of the total stratospheric aerosol loading using ice core records. Figure 9 plots the time series of sulfate deposition in the latitude band 60°–90° for each hemisphere. The major difference is the lag of deposition in time and how the signal is spread over multiple years. In terms of the total deposition, the difference among the four seasons is about 10%. A spring eruption distributed the least loading in NH high latitudes and the most in SH high latitudes among the four seasons, with the opposite for a fall eruption.

Table 3. Total Sulfate Deposition From Different Volcanic Signal Extraction Criteria

<table>
<thead>
<tr>
<th>Eruption</th>
<th>$31\text{pts}+2\text{MAD}$ (Tg)</th>
<th>$31\text{pts}+1.5\text{MAD}$ (Tg)</th>
<th>$31\text{pts}+3\text{MAD}$ (Tg)</th>
<th>$11\text{pts}+2\text{MAD}$ (Tg)</th>
<th>$51\text{pts}+2\text{MAD}$ (Tg)</th>
<th>$101\text{pts}+2\text{MAD}$ (Tg)</th>
<th>s.d.a (Tg)</th>
<th>Cvar.a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1809 Unknown</td>
<td>58.7</td>
<td>62.4</td>
<td>55.6</td>
<td>57.3</td>
<td>61.7</td>
<td>65.2</td>
<td>3.36</td>
<td>5.6</td>
</tr>
<tr>
<td>1815 Tambora</td>
<td>120</td>
<td>121</td>
<td>117</td>
<td>101</td>
<td>125</td>
<td>129</td>
<td>4.53</td>
<td>3.7</td>
</tr>
<tr>
<td>1831 Unknown</td>
<td>17.0</td>
<td>17.2</td>
<td>18.7</td>
<td>13.1</td>
<td>16.7</td>
<td>14.8</td>
<td>1.42</td>
<td>8.4</td>
</tr>
<tr>
<td>1835 Cosigaila</td>
<td>40.2</td>
<td>39.4</td>
<td>37.7</td>
<td>25.2</td>
<td>37.1</td>
<td>36.8</td>
<td>1.48</td>
<td>3.9</td>
</tr>
<tr>
<td>1883 Krakatau</td>
<td>26.9</td>
<td>27.8</td>
<td>22.5</td>
<td>21.1</td>
<td>26.2</td>
<td>22.1</td>
<td>2.63</td>
<td>10.5</td>
</tr>
<tr>
<td>1912 Katmai</td>
<td>22.0</td>
<td>22.3</td>
<td>21.1</td>
<td>19.3</td>
<td>22.9</td>
<td>25.4</td>
<td>1.61</td>
<td>7.1</td>
</tr>
<tr>
<td>1991 Pinatubo</td>
<td>30.1</td>
<td>30.3</td>
<td>20.0</td>
<td>7.2</td>
<td>27.6</td>
<td>30.2</td>
<td>4.40</td>
<td>15.9</td>
</tr>
</tbody>
</table>

aStandard deviation (s.d.) and coefficient of variance (Cvar) were calculated using the five sets of extraction criteria, leaving out the $11\text{pts}+2\text{MAD}$ criterion (see text).

Figure 9. High-latitude sulfate deposition for the Tambora eruption, assuming eruptions at different times of the year. L_i is the average sulfate aerosol loading in each latitude band. NH high latitude is 61°N–90°N and SH high latitude is 61°S–90°S.
in the total loading. The major difference is again the lag of loading in time. In tropical regions, since the solar radiation is relatively constant year around, this time lag in loading does not change the overall radiative affect; in midlatitudes, however, this seasonal difference in peak loading may significantly change its overall radiative impact. For example, we found a large shift of sulfate aerosol loading from the first NH summer and fall to the following winter and spring in both hemispheres for a July and October eruption. As a result, we would expect the direct radiative (cooling) effect to be less in NH midlatitudes for a summer or fall eruption as compared to a spring eruption. In SH midlatitudes, the reduced cooling and increased warming later on balanced each other to some degree and we cannot predict the overall radiative effect on the basis of our simple analysis. GCM simulations are necessary to test the detailed radiative, dynamic, and temperature responses associated with eruptions in different seasons, but it is beyond the scope of this paper.

[31] According to the above comparison, the seasonality of eruption introduced another 10% uncertainty into our calculation of volcanic forcing time series. Nevertheless, the numerical distribution program is too simple to include some important climatic effects such as the QBO, and thus the seasonality difference may be larger than estimated here.

7. Conclusions

[32] We have used 54 ice core records, 32 from the Arctic, including the 12 Clausen and Hammer [1988] ice cores and six PARCA cores, and 22 from Antarctica to generate a new volcanic forcing index for the past 1500 years. The index is a function of month from 501 to 2000, latitude in 10° bands, and height from 9 to 30 km at 0.5 km resolution. It is the longest and the most advanced volcanic forcing time series of this type, because it was based on the most comprehensive set of ice core records, plus an updated signal extraction method, ice core deposition to global stratospheric aerosol loading conversion factors, and a more advanced spatial-temporal transport parameterization scheme. Applying the global average volcanic forcing index together with solar and anthropogenic forcings to an up-welling diffusion energy balance model we simulated the temperature response for the past 1500 years. The model results agree very well with both instrumental observations for the period 1850–2000 and the proxy reconstructions for

Figure 10. Midlatitude sulfate loading for the Tambora eruption, assuming eruptions at different times of the year. L_t is the average sulfate aerosol loading in each latitude band. NH midlatitude is 22°N–61°N and SH midlatitude is 22°S–61°S.
the past millennium. With our volcanic forcing estimates, the model accurately simulated the cooling of about $0.2 - 0.3^\circ C$ for three recent tropical eruptions, 1883 Krakatau, 1963 Agung, and 1991 Pinatubo eruption. The model simulated decadal temperature responses for the largest eruptions such as 1453 Kuwae and 1815 Tambora are also in good agreement with the proxy temperature reconstructions. The same index is being used in a coupled atmosphere-ocean GCM to better evaluate the climate change during the past millennium, and the results will be reported in a separate study.

By using 54 ice core records and accounting for the spatial variation of volcanic deposition in Greenland and Antarctic ice sheets, we significantly reduced the uncertainty in the new volcanic forcing index when compared to earlier studies. However, we still found a 4–10% uncertainty caused by different volcanic signal extraction criteria; 10% uncertainty in high-latitude sulfate deposition when assuming different eruption season in the transport program simulations, and on top of that a 25% uncertainty due to the choice of calibration factor. Nevertheless, this uncertainty range is much smaller than the factor of 2 uncertainty estimated in the early studies.

Time series of global and hemispheric total stratospheric sulfate injections from volcanic eruptions for the past 1500 years, as well as estimates of stratospheric loading as a function of latitude, altitude, and month (suitable for forcing GCMs) are available for downloading at http://climate.envsci.rutgers.edu/IVI2/.

Acknowledgments. We thank all the providers of the ice core data for their massive efforts in obtaining the ice cores, extracting the volcanic signals, and sharing the data with us. Without their hard work, this study would not have been possible. We thank Jürgen Grieser for providing their diffusion sedimentation model and Tom Wigley for providing his climate model and both for help using the models. This work is supported by NOAA grant NA03-OAR-4310155. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

References

C. Ammann, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80307, USA.

C. Gao and A. Robock, Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA. (robock@envsci.rutgers.edu)
Correction to “Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models”

Chaochao Gao, Alan Robock, and Caspar Ammann

Received 4 May 2012; accepted 20 June 2012; published 25 August 2012.

In the paper “Volcanic forcing of climate over the past 1500 years: An improved ice core–based index for climate models” by C. Gao et al. (Journal of Geophysical Research, 113, D23111, doi:10.1029/2008JD010239, 2008) an erroneous longitude was given in one of the ice cores – DML_B33 – in Table 1 as well as Figure 1. The correct coordinates should be “75.2°S, 6.5°E” instead of “75.2°S, 6.5°W.” The corrected Figure 1 and Table 1 are below.

Table 1. Ice Core Time Series Used in the Studya

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Period</th>
<th>Resolution</th>
<th>Measure Type</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A84b</td>
<td>80.7° N, 73.1° W</td>
<td>1923–1961</td>
<td>1/a</td>
<td>ECM</td>
<td>µA</td>
<td>Fisher et al. [1995]</td>
</tr>
<tr>
<td>A77</td>
<td>80.7° N, 73.1° W</td>
<td>1953–1853</td>
<td>1/a</td>
<td>ECM</td>
<td>µA</td>
<td>Fisher et al. [1995]</td>
</tr>
<tr>
<td>NGT_B20</td>
<td>79° N, 36.5° W</td>
<td>830–1993</td>
<td>12/a</td>
<td>CFA</td>
<td>ng/g (ppb)</td>
<td>Bigler et al. [2002]</td>
</tr>
<tr>
<td>NorthGRIP1. ECM</td>
<td>75.1° N, 42.3° W</td>
<td>190–1969</td>
<td>2/a</td>
<td>ECM</td>
<td>n/a</td>
<td>Gao et al. [2006]</td>
</tr>
<tr>
<td>NorthGRIP1.SO4</td>
<td>75.1° N, 42.3° W</td>
<td>190–1969</td>
<td>1/a</td>
<td>total SO4</td>
<td>µequiv/kg</td>
<td>Gao et al. [2006]</td>
</tr>
<tr>
<td>GISP2b</td>
<td>72.6° N, 38.5° W</td>
<td>1984</td>
<td>0.5/a</td>
<td>NSS SO4</td>
<td>pg/kg</td>
<td>Zielinski [1995]</td>
</tr>
<tr>
<td>Dye3 deep</td>
<td>72.6° N, 37.6° W</td>
<td>1768</td>
<td>4/a</td>
<td>ECM</td>
<td>n/a</td>
<td>Gao et al. [2006]</td>
</tr>
<tr>
<td>Greenland Site T</td>
<td>72.6° N, 38.5° W</td>
<td>1731–1989</td>
<td>1/a</td>
<td>EXS</td>
<td>kg/km²</td>
<td>Mosley-Thompson et al. [1993]</td>
</tr>
<tr>
<td>GRIP main</td>
<td>71.3° N, 26.7° W</td>
<td>1–1642</td>
<td>4/a</td>
<td>ECM</td>
<td>n/a</td>
<td>Gao et al. [2006]</td>
</tr>
<tr>
<td>Crete</td>
<td>71.1° N, 37.3° W</td>
<td>553–1778</td>
<td>4/a</td>
<td>ECM</td>
<td>n/a</td>
<td>Gao et al. [2006]</td>
</tr>
<tr>
<td>Greenland Site A</td>
<td>70.8° N, 36.0° W</td>
<td>1715–1985</td>
<td>1/a</td>
<td>EXS</td>
<td>kg/km²</td>
<td>Mosley-Thompson et al. [1993]</td>
</tr>
<tr>
<td>Renland</td>
<td>70.6° N, 35.8° W</td>
<td>1000–1984</td>
<td>1/a</td>
<td>ECM</td>
<td>n/a</td>
<td>Gao et al. [2006]</td>
</tr>
<tr>
<td>20D</td>
<td>65.5° N, 45° W</td>
<td>1767–1983</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>ng/g</td>
<td>Mayewski et al. [1990]</td>
</tr>
<tr>
<td>Mt. Loganb</td>
<td>60.6° N, 141° W</td>
<td>1689–1979</td>
<td>1/a</td>
<td>total SO4</td>
<td>µequiv/L</td>
<td>Mayewski et al. [1993]</td>
</tr>
<tr>
<td>Law Dome</td>
<td>66.7° S, 112.8° E</td>
<td>1301–1995</td>
<td>12/a</td>
<td>NSS SO4</td>
<td>µequiv/L</td>
<td>Palmer et al. [2002]</td>
</tr>
<tr>
<td>Dyer</td>
<td>70.7° S, 65° W</td>
<td>1505–1989</td>
<td>1/a</td>
<td>total SO4 flux</td>
<td>kg/km²</td>
<td>Cole-Dai et al. [1997]</td>
</tr>
<tr>
<td>G15b</td>
<td>71.2° S, 46° E</td>
<td>1210–1983</td>
<td>1/a</td>
<td>DEP</td>
<td>µS/m</td>
<td>Moore et al. [1991]</td>
</tr>
<tr>
<td>Talos Dome</td>
<td>72.8° S, 159.1° E</td>
<td>1217–1996</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>µequiv/L</td>
<td>Steffen et al. [2002]</td>
</tr>
<tr>
<td>Herculese Névé</td>
<td>73.1° S, 165.5° E</td>
<td>1774–1992</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>µequiv/L</td>
<td>Steffen et al. [2002]</td>
</tr>
<tr>
<td>Dome C</td>
<td>74.7° S, 124.2° E</td>
<td>1763–1973</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>µequiv/L</td>
<td>Legrand and Delmas [1987]</td>
</tr>
<tr>
<td>DML_B32.SO4</td>
<td>75° S, 0° W</td>
<td>159–1997</td>
<td>12/a</td>
<td>NSS-conductivity</td>
<td>µS/cm</td>
<td>Truffer et al. [2004]</td>
</tr>
<tr>
<td>DML_B32. ECM</td>
<td>75° S, 0° W</td>
<td>159–1997</td>
<td>12/a</td>
<td>NSS-conductivity</td>
<td>µS/cm</td>
<td>Sommer et al. [2000a]</td>
</tr>
<tr>
<td>DML_B33</td>
<td>75.2° S, 6.5° E</td>
<td>1–1996</td>
<td>12/a</td>
<td>NSS-conductivity</td>
<td>µS/cm</td>
<td>Sommer et al. [2000a]</td>
</tr>
<tr>
<td>DML_B31</td>
<td>75.6° S, 3.5° W</td>
<td>463–1994</td>
<td>12/a</td>
<td>NSS-conductivity</td>
<td>µS/cm</td>
<td>Sommer et al. [2000a]</td>
</tr>
<tr>
<td>Siple Station</td>
<td>76° S, 84.3° W</td>
<td>1417–1983</td>
<td>1/a</td>
<td>Total SO4 flux</td>
<td>kg/km²</td>
<td>Cole-Dai et al. [1997]</td>
</tr>
<tr>
<td>ITASE 01–5</td>
<td>77.5° S, 89° W</td>
<td>1781–2002</td>
<td>1/a</td>
<td>SO4</td>
<td>µg/L</td>
<td>Dixon et al. [2004]</td>
</tr>
<tr>
<td>ITASE 00–5</td>
<td>77.5° S, 124° W</td>
<td>1708–2001</td>
<td>1/a</td>
<td>SO4</td>
<td>µg/L</td>
<td>Dixon et al. [2004]</td>
</tr>
<tr>
<td>ITASE 00–4</td>
<td>78.5° S, 120° W</td>
<td>1799–2001</td>
<td>1/a</td>
<td>SO4</td>
<td>µg/L</td>
<td>Dixon et al. [2004]</td>
</tr>
<tr>
<td>ITASE 01–3</td>
<td>78.1° S, 95.6° W</td>
<td>1859–2002</td>
<td>1/a</td>
<td>SO4</td>
<td>µg/L</td>
<td>Dixon et al. [2004]</td>
</tr>
<tr>
<td>ITASE 00–1</td>
<td>79.4° S, 111° W</td>
<td>1651–2001</td>
<td>1/a</td>
<td>SO4</td>
<td>µg/L</td>
<td>Dixon et al. [2004]</td>
</tr>
<tr>
<td>ITASE 99–1</td>
<td>80.6° S, 122.6° W</td>
<td>1713–2000</td>
<td>1/a</td>
<td>SO4</td>
<td>µg/L</td>
<td>Dixon et al. [2004]</td>
</tr>
<tr>
<td>Plateau Remoteb</td>
<td>84° S, 43° E</td>
<td>1986</td>
<td>1/a</td>
<td>SO4</td>
<td>µg/L</td>
<td>Cole-Dai et al. [2000]</td>
</tr>
<tr>
<td>PSI1b</td>
<td>90° S</td>
<td>1010–1984</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>ng/g</td>
<td>Delmas et al. [1992]</td>
</tr>
<tr>
<td>PSI4b</td>
<td>90° S</td>
<td>1800–1984</td>
<td>1/a</td>
<td>NSS SO4</td>
<td>ng/g</td>
<td>Delmas et al. [1992]</td>
</tr>
<tr>
<td>SP2001c1</td>
<td>90° S</td>
<td>905–1999</td>
<td>1/a</td>
<td>Total SO4 flux</td>
<td>kg/km²</td>
<td>Budner and Cole-Dai [2003]</td>
</tr>
<tr>
<td>SP95</td>
<td>90° S</td>
<td>1487–1992</td>
<td>1/a</td>
<td>SO4</td>
<td>µg/L</td>
<td>Dixon et al. [2004]</td>
</tr>
</tbody>
</table>

*aECM, electrical conductivity measurement; DEP, dielectric profiling; NSS SO4, non-sea-salt sulfate; CFA, continuous flow analysis; NSS-conductivity, non-sea-salt conductivity; EXS, excess sulfate.

bUsed by Robock and Free [1995].

©2012. American Geophysical Union. All Rights Reserved.
0148-0227/12/2012JD018052

D16112 1 of 2
Figure 1. Distribution of ice core sites in the Arctic and Antarctic. See Table 1 for details about each time series.