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[1] This study evaluates the cold season process modeling in the North American Land
Data Assimilation System (NLDAS) and consists of two parts: (1) assessment of land
surface model simulations of snow cover extent and (2) evaluation of snow water
equivalent. In this first part, simulations of snow cover extent from the four land surface
models (Noah, MOSAIC, Sacramento land surface model (SAC), and Variable
Infiltration Capacity land surface model (VIC)) in the NLDAS were compared with
observational data from the Interactive Multisensor Snow and Ice Mapping System for a
3 year retrospective period over the conterminous United States. In general, all models
simulate reasonably well the regional-scale spatial and seasonal dynamics of snow cover.
Systematic biases are seen in the model simulations, with consistent underestimation of
snow cover extent by MOSAIC (—19.8% average bias) and Noah (—22.5%), and
overestimation by VIC (22.3%), with SAC being essentially unbiased on average.
However, the level of bias at the regional scale varies with geographic location and
elevation variability. Larger discrepancies are seen over higher elevation regions of the
northwest of the United States that may be due, in part, to errors in the meteorological
forcings and also at the snow line boundary, where most temporal and spatial variability in
snow cover extent is likely to occur. The spread between model simulations is fairly low
and generally envelopes the observed data at the mean regional scale, indicating that the
models are quite capable of simulating the general behavior of snow processes at these
scales. Intermodel differences can be explained to some extent by differences in the model

representations of subgrid variability and parameterizations of snow cover

extent.
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1. Introduction

[2] Cold season processes play an important role within
the hydrological cycle through their influence on the
dynamics of moisture storage and the partitioning of incident
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radiation [Groisman et al., 1994]. The strength of this
influence is due in part to the large spatial scales involved
and quantity of equivalent water held in frozen storage.
Snow cover extends over vast regions of the Northern
Hemisphere during the winter and permanent snow cover
exists over much of northern Eurasia, North America and
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areas of high elevation [Groisman et al., 1994; Brown,
2000]. Frozen moisture in the soil and overlying snowpack
form large reservoirs that may store water for many months
before being released during the spring melt. This has great
implications for the environment and water resources,
which rely on the regularity of the melting process and
subsequent flooding. In turn, the high albedo of the snow-
pack reflects a large proportion of incoming radiation,
altering the radiation balance with the atmosphere and
instigating changes to circulation patterns that may be felt
thousands of kilometers away [Cohen and Entekhabi, 2001;
Yang et al., 2001].

[3] Accurate prediction of cold season processes is there-
fore vital in determining the budgets of water and energy
and the feedbacks to the atmosphere. Within the North
American Land Data Assimilation System (NLDAS)
[Mitchell et al., 1999, 2000; K. Mitchell et al., The multi-
institution North American Land Data Assimilation System
(NLDAS) Project: Utilizing multiple GCIP products and
partners in a continental distributed hydrological modeling
system, submitted to Journal of Geophysical Research,
2003, hereinafter referred to as Mitchell et al., submitted
manuscript, 2003] simulations of snow cover, along with
soil moisture, have a central role in improving forecasts
from Numerical Weather Prediction models, which benefit
from enhanced predictions of the water and energy fluxes
and states at the lower boundary of Earth’s surface (Mitchell
et al., submitted manuscript, 2003). To this end, the NLDAS
will assimilate predictions from land surface models (LSM)
of cold season process variables to improve the accuracy of
weather forecasts. This paper assesses the cold season
process simulations from the four land surface models
participating within the NLDAS. Assessment of the accuracy
of model simulations and identification of the differences
between models will enhance the understanding of cold
season processes and help identify the applicability and
limitations of LSM models in this area. Previous cold season
modeling studies have looked at model intercomparisons and
validation against observations but these have been limited in
spatial scale (e.g., Essery et al. [1999], the Project for
Intercomparison of Landsurface Parameterization Schemes
(PILPS) Phase 2(d) catchment scale experiment in Russia
[Slater et al., 2001], the PILPS Phase 2(e) experiment in
northern Scandinavia [Bowling et al., 2003a, 2003b;
Nijssen et al., 2003] and the International Association of
Hydrological Sciences/International Commission on Snow
and Ice Snow Model Intercomparison Project (SnowMIP)
[Essery and Yang, 2001; Etchevers et al., 2002]), or have
used coupled models that suffer from errors in the atmo-
spheric forcings, e.g., Foster et al. [1996] and Frei and
Robinson [1998]. The NLDAS modeling framework is
implemented over the conterminous US at 1/8-degree grid
resolution for multiple simulation years and at a subdaily
time estep. As such, it provides the opportunity to evaluate
cold season process modeling, using observation-based
forcings, eat time and space scales not achieved in previous
studies.

[4] Two of the most important cold season process vari-
ables are snow cover extent (SCE) and snow water equiv-
alent (SWE). Snow cover extent is a measure of the spatial
extent of snow and determines the spatial influence of snow
on the atmosphere through the partitioning of incident
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radiation. Snow water equivalent quantifies the amount of
frozen moisture storage and will in turn determine the
amount and timing of runoff during subsequent spring melt.
This study is split into two parts in which these two
quantities are treated separately. This paper forms the first
part of the study and concentrates on the assessment of
model simulations of snow cover extent through intermodel
and observational data comparisons. The second part of this
study [Pan et al., 2003] evaluates the simulations of snow
water equivalent.

2. Cold Season Process Modeling

[s] The four land surface models that contribute to the
NLDAS modeling effort (MOSAIC, Noah, SAC and VIC)
simulate cold season processes with varying degrees of
complexity. In general, all models simulate the physical
processes of changes of moisture states and the related
partitioning of energy fluxes (except the SAC model which
does not simulate the land surface energy balance) but the
parameterizations used may differ between models. In
addition, each model handles subgrid variability of vegeta-
tion and elevation at different levels of complexity, which
affects snow cover simulations through subgrid variations in
precipitation, temperature and radiation budgets.

[6] The snow modules used in the different models are
based on balances of mass and energy in the snowpack.
The change in snowpack SWE is balanced by the input
snowfall and output snowmelt and snow sublimation. The
heat flux through the snowpack (sum of net radiation,
sensible/latent heat, ground heat fluxes) is used to change
the temperature, phase composition, and amount of snow-
pack. MOSAIC, Noah, and VIC run at full energy mode,
which means that the snow energy process is coupled into
the energy transfer processes of the entire LSM. Thus in
one time step, temperatures of soil layers, soil surface, and
snowpack layers (if any) will be solved from heat transfer/
balance equations for the entire system (soil, snowpack,
vegetation, and air) together with the corresponding
water balance equations. Each individual model may have
different simplifying assumptions, e.g., linearization of
the heat transfer equation (MOSAIC) or constant temper-
ature boundary conditions in the deep layer (VIC). Noah,
uniquely, addresses the change of snow density due to
compaction in time, and assumes the maximum liquid
water storage capacity in the snowpack to be 13%, above
which it is removed from the snowpack [Koren et al.,
1999]. Noah also accounts for effects from frozen soil, e.g.,
the reduction of soil infiltration capacity. Noah and VIC
account for snow aging by decreasing the albedo, and
model the retention of liquid water in the pack [Wigmosta
et al., 1994; Koren et al., 1999]. SAC differs from the other
three models by simulating only the snowpack water
balance, using the SNOW17 snowpack model of Anderson
[1973], which is run separately. SNOW17 does not simu-
late sublimation and calculates snowmelt as a function of
air temperature. Different models also apply slightly differ-
ent approaches to convert SWE to snow cover extent as
described below.

[7] Figure 1 illustrates how each model represents sub-
grid processes and the parameterizations used for deriving
snow cover extent. All models parameterize SCE as a
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Figure 1.

Representation of subgrid processes and parameterizations of snow cover extent in the

NLDAS land surface models. Subgrid tiling is denoted by V1, V2, etc., for vegetation and by E1, E2,

etc., for elevation.

function of SWE. The MOSAIC model [Koster and Suarez,
1996] uses the following formulation:

SWE

SCE = ————~-—
SWE + SWEia’

(1)

where SWE,,;; is a vegetation-dependent parameter (0.05 m
for forest and tall shrubs, 0.002 m otherwise). Each
computational grid is divided into vegetation tiles and
SCE is calculated independently over each vegetation type
within a grid. The final grid cell mean SCE is the weighted
average of the tile values. The Noah model [Betts et al.,
1997; Chen et al., 1996, 1997; Koren et al., 1999] has no
subgrid vegetation tiling but uses the following vegetation-
dependent formulas to calculate fractional snow covered
area:

SWE
b/ E Emax: E=1- S N p——
If SWE < SWi then SC {exp( Q SWEmax)
n SWE xp( )
SWEmax 70"

If SWE > SWEax, then SCE =1 @)

SWE,,ar 1s the value of SWE at which the snow cover
reaches full coverage (0.08 m for forest, 0.025 m for bare
soil, 0.04 m otherwise) and o = 2.6 is a curve shape
parameter. This formula is equivalent to an empirical areal
snow depletion curve [Anderson, 1973; Koren et al., 1999].
The SAC model [Burnash et al., 1973; Burnash, 1995] has
no subgrid variability, but also uses the empirical areal snow

depletion curve [Anderson, 1973] which relates SCE to a
normalized value of SWE:

SWE

SWE = ——————————
min(SI, SWEmax )’

3)

where SWE .« 1s the maximum SWE for the grid over the
simulation period and S7 is the lower limit of SWE at which
there is full snow coverage (set to 90mm here). The VIC
model [Liang et al., 1994, 1996, 1999; Cherkauer and
Lettenmaier, 1999] uses both subgrid vegetation tiling and
elevation banding and simply assumes that any snow fully
covers the tile:

If SWE =0, then SCE =0

: 4)
If SWE > 0, then SCE =1

Note that VIC handles the water/energy budgets and tracks
all the states separately for each tile depicting a specific
vegetation cover and for each elevation band. Precipitation
input is uniformly distributed (weighted only by area) to
each tile, and temperature forcing is adjusted according to an
elevation lapse rate. As with MOSAIC, the weighted average
of the tile SCE values gives the final grid cell mean value.

3. Data
3.1. Land Surface Model Simulations

[8] The land surface models participating in the NLDAS
operate within a framework that consists of a common
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Figure 2. Example of IMS snow/ice cover map for the
Northern Hemisphere (white color is snow, black color is
ice).

1/8-degree geographic grid over the conterminous United
States, using common soil and vegetation parameters and
distributions, and common meteorological forcings. Simu-
lations were run retrospectively for the period October 1996
to September 1999. Model outputs include predictions of
grid average snow cover extent as well as standard water
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and energy states and fluxes. Details of the NLDAS
modeling framework and the retrospective simulations are
given in the NLDAS overview paper of Mitchell et al.
(submitted manuscript, 2003).

3.2. Observed Snow Cover Extent

[0] In this study the snow cover product from the Multi-
Sensor Snow and Ice Mapping System (IMS) [Ramsay,
1998] is used to compare with model-simulated snow cover
extent. The IMS product was designed to replace and
improve upon the older National Environmental Satellite,
Data and Information Service (NESDIS) Northern Hemi-
sphere snow analysis and is currently operated by the
Satellite Analysis Branch (SAB) of the National Oceanic
and Atmospheric Administration/Satellite Services Branch
(NOAA/SSB). The IMS product is a spatially complete data
set of snow cover extent from 1997 to the present and is
derived from a number of data sources. Snow and ice maps
are produced each day by human snow analysts using the
IMS to incorporate a series of snow observations, including
remote-sensing from geostationary satellites (NOAA Geo-
stationary Operational Environmental Satellites (GOES),
European Space Agency (ESA) Meteosat, National Space
Development Agency of Japan (NASDA) Geostationary
Meteorological Satellite (GMS)), and polar orbiting satel-
lites (NOAA Polar Operational Environmental Satellites
(POES) carrying the Advanced Very High Resolution
Radiometer (AVHRR) and Advanced Microwave Sounding
Unit (AMSU); United States Air Force (USAF) Defense
Meteorological Satellite Program (DMSP) carrying the
Special Sensor Microwave/Imager (SSM/I)), station data
and some other ancillary data sources for cloud obscured
areas. IMS products cover the Northern Hemisphere and are
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Figure 3. Map of the eight Regional Forecast Center (RFC) regions used in this study.
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Figure 4. Time series of percentage snow cover extent (SCE) over the eight RFC regions for the IMS
observed data and the NLDAS model simulations for the period February 1997—September 1999. IMS
(black), MOSAIC (red), Noah (blue), SAC (gold), VIC (green).

projected to a polar stereographic grid with spatial resolu-
tion of about 25 km, and classify each land grid to have
presence or absence of snow. Figure 2 shows an example of
an IMS image. For comparison with the higher spatial
resolution NLDAS model data, the IMS product was
resampled to the NLDAS grid (~12 km) using the nearest
neighbor algorithm. This may introduce errors at the snow
line boundary but as the occurrence of snow is primarily
controlled by meteorological processes that behave at a
much larger scale these errors should be relatively small.
Validation of the IMS product was carried out under a joint
effort by NESDIS, the National Weather Service (NWS) and
Rutgers University [Ramsay, 1998].

4. Analysis

[10] To compare with the observed IMS data, the model-
simulated data were converted to presence/absence values
using a threshold of 0.1 fractional cover, i.e., if a pixel has at
least 0.1 fractional coverage, then it is considered as snow

covered and snow free if the fractional cover is less than 0.1.
Through their parameterizations of snow cover extent and
subgrid variability in vegetation cover and elevation, the
model simulations may have quite variable total fractional
snow cover at the full pixel scale. Thus the threshold value
of model predicted fractional snow cover used in classifying
pixels as snow covered or not snow covered has an
important effect on the comparisons. Setting the threshold
value too high may lead to the number of model predicted
snow covered pixels being set too low and conversely,
biased too high when a low threshold is used. In addition,
given the differences in parameterizations of snow cover
extent between models, a specific threshold value may give
better results for some models and not for others and this
may vary according to the region of comparison. The
threshold value was chosen after sensitivity tests were
carried out (not shown) on the affect of the threshold on
model performance when compared with the observation
data. It was found that the VIC model is relatively insen-
sitive to the threshold value, given its binary parameteriza-
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Figure 5. Time series of the percentage of matching snow covered pixels between the IMS observed
data and the NLDAS model simulations for the period February 1997—September 1999. MOSAIC (red),

Noah (blue), SAC (gold), VIC (green).

tion of SCE at the subgrid level. The MOSAIC model
showed more sensitivity, especially in the snow accumula-
tion phase of the winter months. SAC and especially Noah
are very sensitive to the threshold value. For example, a
threshold value of 0.3 resulted in a significant under
estimation of SCE by both models. In the end, the threshold
value chosen in this study (0.1) was set low so as to
encompass the majority of pixels that were predicted to
have snow coverage. In this way a model is not penalized
for modeling the subgrid variability of snow processes that
may result in small concentrated areas of snow cover within
the whole grid.

4.1. Snow Cover Extent at Regional Scales

[11] Comparison of the observed and modeled snow
cover extent was carried out over eight River Forecast
Center (RFC) regions chosen to encompass higher eleva-
tions and the winter time snow cover extent of the United
States (see Figure 3). The mean SCE value for the observed
IMS product and the model simulations was calculated over

each RFC region for each day and the time series is shown
in Figure 4.

[12] In general, the results indicate a good agreement
between the modeled and observed mean regional SCE
although there are systematic biases for all models and
regionally dependent differences in how well the models
perform. For all regions, the SAC and VIC models
predict the highest agreement, and Noah the lowest,
while MOSAIC falls somewhere in between. On average,
VIC tends to over estimate SCE (average bias over all
regions = 22.3%), MOSAIC and Noah tend to under
estimate (—19.8%, —22.5%, respectively) and SAC is
essentially unbiased (—0.02%). The more mountainous
regions (Colorado, California/Nevada and northwest)
appear to show the largest differences. This is especially
the case in the northwest region during the spring melt
period where the VIC model overestimates the snow cover
extent (spring bias = 26.1%) and the other models tend to
make underestimates (MOSAIC = —20.2%, Noah =
—65.6%, SAC = —22.0%).
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Figure 6. Maps of mean annual cumulative snow covered days for the IMS observed data and NLDAS
model simulations for the period October 1997—September 1999.

[13] Although comparison of the regional mean SCE
provides valuable information about the general perfor-
mance of the models in terms of the simulated total cover
of snow in a region, it does not necessarily indicate whether
the models are predicting snow to be in the correct place. To
address this, a pixel-by-pixel comparison of snow cover was
undertaken to determine how well the models simulate the
spatial pattern of snow through the year. Again, compar-
isons were carried out for the eight RFC regions and the
time series of the percentage of matching pixels are shown
in Figure 5.

[14] Overall, all models match at least 50% of the
observed data throughout most of the comparison period
and on average predict about 75—-80% of the pixels cor-
rectly during the winter months (MOSAIC = 75.4%, Noah =
73.3%, SAC = 81.3%, VIC = 77.6%) and about 85—90%
correctly in the spring (MOSAIC = 85.1%, Noah = 85.1%,
SAC =90.0%, VIC = 86.6%). The exceptions to this are in
the flatter regions such as the north central and northeast
where the models periodically predict less than 50% of the
pixels correctly. During the summer when there is usually
no snow over each region, the match between modeled and
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Figure 7. Percentage of incorrect snow covered days in the NLDAS model simulations compared to
IMS observed data for the period October 1997—September 1999.

observed data is 100%, which is to be expected. In general,
the SAC model appears to perform well over mountainous
regions and less well over flatter areas such as the mid-
Atlantic region. The VIC model tends to do better in the
midwinter months (except in the Colorado basin) and the
MOSAIC and Noah models predict snow cover more
accurately during the late winter and spring melt periods.

4.2. Temporal Analysis of Snow Cover Extent

[15] To assess model performance at the pixel level rather
than just at the regional mean level, maps of annual
cumulative snow covered days were plotted for October
1997 to September 1999, for the observed data and model
simulations (see Figure 6). In this way, it can be seen
whether the models overestimate or underestimate the snow
cover for any one pixel over the year. The cumulative snow
day maps indicate that the models simulate the general
spatial pattern of snow over the USA well, although each
model may differ somewhat at smaller scales in individual
regions. Overall, the following general relationship holds:
SCEVIC > SCESAC > SCEMOSAIC > SCENoah while the
observed data lie somewhere in between. This is consistent
with the mean SCE time series shown in Figure 4.

[16] Figure 7 shows maps of the percentage of days that
were incorrectly simulated by the models. An incorrect day
is defined as one on which the measured record indicated

the presence of snow but the model simulation indicated
otherwise or vice versa. This shows how well the models
perform in predicting the timing of the occurrence of snow.
There is reasonable agreement between the observations
and the models with the percentage of incorrect days being
generally less than 20% for the majority of the domain. The
exception is in the regions of higher elevation and most
notably over the Cascades and the Sierra Nevada mountains
and in north and central Wyoming for all models. In
general, the Noah model tends to have the most incorrect
days and the SAC model the least.

4.3. Distribution of Snow Cover Extent With Elevation

[17] Elevation is one of the key factors in governing cold
season processes in midlatitude regions due to its relation-
ship with temperature. This controls the partitioning
of precipitation into snowfall and rainfall and is a limiting
factor in the melting of the snowpack in the spring. Figure 8
shows the histograms of elevation distribution for each RFC
region using 200 m elevation intervals. The four western
RFC regions (Northwest, Missouri, California/Nevada and
Colorado) have a wide elevation range, indicating that
topography may play an important role in cold season
processes.

[18] Figure 9a shows the mean and Figure 9b the standard
deviation of snow cover extent as a fraction of the total area
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Figure 8. Histograms of elevation distribution for the
eight RFC regions (elevation interval = 200 m).

over each elevation interval for the RFC regions during the
winter/spring period (Dec—May). All model simulations
show reasonable agreement with the mean observed data
in terms of the shape of the histograms. Again it can be
seen that the VIC model tends to overestimate snow cover,
especially in mountainous regions. The Noah model tends
to underestimate snow cover extent at all elevations except
in the eastern regions (northeast, mid-Atlantic and Ohio)
where it does reasonably well. The opposite is true for the
MOSAIC model which tends to match the observed data
less well in eastern regions and better in the western
regions, although here it tends to underestimate the lower
elevation snow cover extent and overestimate at higher
elevations. Most noticeable is the good agreement with
observations for the SAC model with the sole exception of
the California/Nevada region where there is a somewhat
spurious drop in the observed snow cover percentage at
very high elevations. This may be due to the lower spatial
resolution of the IMS observations which may limit the
accuracy to which it can represent the small number of high
elevation pixels that exist in this region (see elevation
distribution, Figure 8).

[19] The plots of standard deviation indicate the variabil-
ity of snow cover at different elevations. For flatter regions
(north central, Ohio Basin, northeast and mid-Atlantic)
observed variability increases with elevation and all models
reproduce this well, although the MOSAIC model tends to
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underestimate the variability in the mid-Atlantic and Ohio
regions. All models do less well in representing the vari-
ability in the mountainous regions of the western USA,
especially at higher elevations.

5. Discussion
5.1. General Discussion

[20] All models do reasonably well in simulating the
seasonal cycle of mean snow cover extent over the 8§ RFC
regions. The spread between model simulations is fairly low
and generally encompasses the observed data. The differ-
ences between model simulations may be attributed, to
some extent, to model specific parameterizations of snow
cover extent. A comparison of the threshold values of SWE
required to give large values of SCE in each of the models
(section 2) reveals that SAC and Noah require a relatively
deep snowpack, while MOSAIC requires substantially less
and VIC requires very little. Therefore, for a given nontriv-
ial but nondeep SWE value, VIC will generally yield the
highest snow cover, followed by MOSAIC, then Noah, and
finally SAC. VIC tends to over predict snow cover extent
and this may be due to its parameterization of snow cover as
only fully covered or snow free within a subgrid tile.
Although the subgrid tiling in the VIC model translates

100 100

Northwest _ Missouri

50 50 -
<
S o ; ; ; 0 ‘ ‘ ‘
:6 100 0 1000 2000 3000 100 0 : 1000. 2000 3000
(>3 North Central Ohio Basin
o ~
= | |
3 50 50
[
5 —
o] _
% 0 T T 0 T T

1 1
D 100 0 500 000 100 0 . 500. 000
- Northeast Middle Atlantic
o pZ
.g
> 50 50
K
i —
Y /\/
g 0 ‘ ‘ 0 ‘ ‘
0 500 1000 0 500 1000

@ 100 100 -
) California Nevada Colorado Basin /
=

50 50 A

T T T 0 U T T
0 1000 2000 3000 0 1000 2000 3000
a Elevation (m)

Figure 9. Histograms of (a) mean and (b) standard
deviation of RFC region snow cover as a function of
elevation. MOSAIC (red), Noah (blue), SAC (gold), VIC

(green).
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Figure 9. (continued)

into a fractional coverage at the grid scale, the coverage
within each tile is biased toward full coverage. This will in
turn bias the full pixel scale value toward presence of
snow. In addition, the VIC model uses subgrid elevation
banding, which through temperature lapsing and lower
temperatures at the higher elevation bands, increases the
probability of the existence of snow cover within the grid
as a whole. The tendency of the Noah model to under
predict SCE may be attributable, in part, to its relatively
higher SWE threshold for large SCE values. With all other
things equal, this will bias the Noah SCE values low in
relation to the other models for moderate to low SWE
values. Despite the relative simplicity of the representation
of snow processes in the SAC model, it appears to perform
just as well, if not better, than the other models when
compared at these large regional scales. By forcing a
simple snow model with only the primary controlling
factors on snowpack development (e.g., air temperature),
the SAC model may actually be able to capture the major
dynamics of the snowpack while avoiding the propagation
of errors that may occur in a fully coupled energy and
water balance scheme.

[21] It appears that all models do less well over the
mountainous regions to the northwest of the United States.
This is to be expected due to the inherent difficulties in
modeling snow processes over variable topography where
meteorological variables such as precipitation, air tempera-
ture and downward solar radiation are more variable and
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any errors in these input forcings may be higher due to the
scarcity of observational data over these regions. A com-
parison of NLDAS forcing data with station measurements
in high elevation western regions of the United States is
presented in the second part of this paper [Pan et al., 2003].
The results of this show a reasonable agreement for air
temperature but large differences in precipitation. Further-
more, a high bias in the NLDAS insolation forcing is
reported by Pinker et al. [2003], although the effects of
this has not yet been quantified. Such biases in the precip-
itation and insolation forcing data may account for some of
the differences seen between the observed data and the
model simulations.

[22] The pixel-by-pixel comparison of model-simulated
snow cover extent and observation data indicate reasonable
skill by the models to reproduce the spatial pattern of snow
over large regions. Although there are periods when the
number of matching pixels drops below 50% for any model,
the average wintertime value is in the region of 75%. The
cumulative snow maps are consistent with the mean regional
time series and pixel-by-pixel comparisons, reflecting the
general underestimation of the Noah model and the overes-
timation of the VIC model, with the other two models falling
somewhere in between.

5.2. Observation Data Characteristics

[23] For meaningful conclusions to be drawn about the
validity of the model simulations, the reliability of the
observational data with which it is compared must be
sufficient in terms of the length of record, the spatial and
temporal resolution and the level of error in the data. The
IMS data set provides daily observations of snow cover
extent which have sufficiently high temporal resolution to
evaluate model simulations given the relatively low vari-
ability of snow cover over daily scales.

[24] The IMS data set is essentially binary data, i.e., snow
is either present or absent at the pixel scale. Satellite sensors
can only report the pixel-averaged surface radiative emis-
sions, which means that the value for snow cover (fully
covered or snow free) obtained from the retrieval algorithms
will be a compromise. For example, a pixel may in reality
have only 20% snow cover but may be classified as fully
snow covered in the final product. In addition to a number
of satellite and ancillary data sources, the IMS also includes
the use of human operators, which may result in a certain
level of subjectiveness in the classification process. There-
fore it is difficult to ascertain what the threshold value for
categorizing the simulated SCE data should be in relation to
the observational data. The threshold value of 0.1 was
chosen low to allow for this.

[25] The spatial resolution of the IMS data set (~25 km)
is lower than the model data (~12 km) but the low spatial
variability of snow cover means that the effect of disag-
gregating the observed data to the modeled resolution will
be small over large regions of continuous snow cover. Any
detrimental effects are likely to be seen at the snow line and
in regions of high topographic variability where the snow
line may be more dynamic and spatially variable.

5.3. Effect of Elevation

[26] The analysis of snow cover extent with respect to
elevation, as described in section 4.3, indicates differences
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in how well the models perform between the western and
eastern regions. This may be due in part to regional
differences in which cold season processes are dominant
and the varying ability of models to simulate these pro-
cesses. For example, in mountainous regions where the
cold season weather may be dominated by low temper-
atures and heavy snowfalls and thus large snowpacks,
some models may fair better than others at simulating
the long-term development and decay of deep snowpacks.
Conversely, the parameterizations used in other models
may be more suitable over the flatter areas of the midwest
and east, where pack depths may be lower and the freeze/
melt process is more dynamic. Further analysis is required
to determine the exact nature of the differences exhibited
by the models and whether these differences depend on the
type of cold season process that is dominant in a particular
region.

[27] All models generally perform worse at higher
elevations and this is likely due in part to the difficulties
in specifying the meteorological forcings correctly at
high elevations and over complex terrain. The large
differences in precipitation between the NLDAS forcing
and station measurements as described in the second part
of this paper [Pan et al., 2003] may account for some
of the differences seen at these higher elevations but the
number of pixels at these elevations is relatively small
and so the effect on the regional mean may not be
significant.

5.4. Detailed Analysis of Intermodel Differences

[28] The differences between model simulations are
clearly apparent and are consistent in all the analysis
presented so far. Although the systematic biases may be
due to model specific parameterizations of SCE and
representations of subgrid variability of vegetation and
elevation, more detailed analysis of the modeled cold
season processes is required to gain insight into the reasons
for these differences. To this end, Figure 10 shows mean
monthly time series of snowmelt, snow sublimation and
surface albedo averaged over the northwest RFC for the
four models (SAC does not calculate sublimation and does
not use albedo in its snow model). This region showed
some of the largest differences between model simulations.
The recent PILPS Phase 2 high latitude modeling experi-
ments [Slater et al., 2001; Bowling et al., 2003a, 2003b;
Nijssen et al., 2003] found large differences in snow
ablation and snowmelt among 21 LSMs and concluded
that the differences in model parameterizations of albedo
and snow cover had a large effect on available energy to
the snowpack.

[20] Figure 10 clearly illustrates that the Noah model
simulates significantly higher wintertime snowmelt and
sublimation than the other models. During the late spring,
the snowmelt and sublimation reduce to almost zero as
much of the snowpack has already melted. This reflects the
behavior seen in the regionally averaged time series in
Figure 4 where the Noah predicted snow cover extent
tends to disappear early. SAC and MOSAIC tend to have
higher melt in the spring than the winter months while
VIC melts at a more constant rate throughout the winter
and spring and has virtually zero sublimation in the second
year.
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Figure 10. Time series of regional mean monthly
i) snowmelt, ii) snow sublimation and iii) surface albedo
for three NLDAS models for the northwest RFC. MOSAIC
(red), Noah (blue), SAC (gold), VIC (green).

[30] The Noah model-simulated albedo values (0.2—0.3)
shown in Figure 10 are lower than the other two models
(0.3-0.5 for MOSAIC and 0.5-0.65 for VIC). This is
consistent with the aforementioned general ordering of
Noah, MOSAIC and VIC having low, moderate and high
snow cover extent. The calculated albedo for the Noah
model may be low because it represents a grid mean value
and not just a value for the snow-covered fraction.
Therefore, when the snow covered fraction within a grid
is less than 100%, the albedo used may be unrepresenta-
tive of the snowpack, as it also represents vegetation and
bare soil which generally have lower albedo values. Lower
albedo values will lead to greater absorption of downward
solar radiation by the snowpack and thus more available
energy for snowmelt. This is demonstrated for the Noah
model in Figure 10 with high snowmelt and sublimation
during the winter. Conversely, the VIC model tends to
have relatively higher albedo values and this is reflected in
the overestimates of snow cover extent seen previously.
The effect of lower albedo on the energy balance of the
snowpack may be reinforced as reduced snow cover within
a grid may lead to further reductions in the albedo value
and thus further melting. This feedback may be accelerated
by the reported high bias in the NLDAS incoming solar
radiation [Pinker et al., 2003]. Interestingly, the relatively
good performance of the SAC model in simulating SCE
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over large scales, may be due, in part, to the use of a
simple temperature index method that avoids these feed-
back loops.

6. Conclusions

[31] Simulations of snow cover extent from the four land
surface models within the NLDAS were compared with
observational data from the IMS over a 3 year retrospective
period over the continental United States. In general, all
models do reasonably well in simulating the regional-scale
spatial and seasonal dynamics of snow cover. However, the
model simulations show systematic biases, with consistent
underestimation of snow cover extent by the MOSAIC and
Noah models, and overestimation by the VIC model, with
the SAC model being essentially unbiased. The level of bias
at regional scales is dependent on geographic location and
elevation variability. Larger discrepancies are seen over
higher elevation regions that may be due in part to errors
in the meteorological forcings. Know biases in the NLDAS
precipitation and incoming solar radiation may have a
significant effect on the performance of the models and
further validation of these data is needed. Other discrep-
ancies are apparent at the snow line boundary where most
temporal and spatial variability in snow cover extent is
likely to occur. However, the spread amongst model simu-
lations is fairly low and generally envelopes the observed
data at the mean regional scale, indicating that the models
are quite capable of simulating the general behavior of snow
processes at these scales. Although intermodel differences
can be explained to some extent by differences in the model
representations of subgrid variability and parameterizations
of snow cover extent, further analysis is required to under-
stand where and why the differences between models are
occurring and why some models perform better than others
under different conditions. For example, detailed analysis of
model simulation output over the northwest region revealed
that the way in which the models calculate albedo may be a
key factor in explaining the differences in the predicted
snow cover extent.
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