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Proposals to engineer the climate are not new (Budyko, 1974; Latham, 1990), but received little attention until Nobel

Laureate Paul Crutzen’s 2006 essay on the potential to cool the Earth by injecting sunlight-reflecting aerosols into the

stratosphere (Crutzen, 2006)—breaking the taboo on geoengineering research. Since Crutzen’s essay, slow and stalling

progress on emissions reductions (Peters et al., 2013), increasing attribution of negative impacts in social and environ-

mental systems to climate change (Carleton and Hsiang, 2016), and the ambitious goal in the Paris Climate Agreement

to hold global warming to below 2�C (Rogelj et al., 2016) have all heightened attention on solar geoengineering as a

potential tool to reduce the impacts of climate change.

The term “geoengineering” (also called “climate engineering” or “climate intervention”) refers to suggestions to arti-

ficially enhance Earth’s albedo, called albedo modification or solar radiation management (SRM), and to suggestions to

remove carbon dioxide from the atmosphere to reduce the greenhouse effect, called carbon dioxide removal (CDR).

They are quite distinct in technology, risks, costs, and benefits. Here we only address SRM. The aim of proposed SRM

techniques is to increase the reflection of sunlight back to space to cool the climate. SRM is not typically considered

climate change adaptation because the aim of proposed schemes is to reduce climate impacts on human and natural sys-

tems by reducing the amount of global warming rather than human and natural systems adapting to cope with higher

temperatures. Thus, SRM might be used in combination with, or to buy time for, further mitigation, adaptation, and

CDR efforts. For example, if climate sensitivity to carbon dioxide increasing is at the mid�high end of estimates then

using some moderate and temporary amount of SRM in combination with aggressive emissions mitigation may keep

global mean temperatures below 2�C and prevent climate impacts from more extreme warming (Smith and Rasch,

2013; Keith and MacMartin, 2015). The consideration of SRM technologies therefore requires the development of

strong governance mechanisms and must be considered in close coordination with mitigation and adaptation efforts.

Indeed, to deploy SRM in isolation would be reckless (Box 24.1).

Climate model simulations have shown that SRM techniques may be able to offset a substantial fraction of the change

in temperature and precipitation from increased atmospheric greenhouse gas concentrations (Kravitz et al., 2013).

291
Resilience. DOI: https://doi.org/10.1016/B978-0-12-811891-7.00024-4

© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-811891-7.00024-4


However, simulations have also shown trade-offs in SRM effects on temperature and precipitation so that no SRM tech-

nique is able to completely reverse anthropogenic climate change and return the climate to a preindustrial state (Kravitz

et al., 2013). Furthermore, the risks associated with stratospheric SRM may outweigh the potential benefits (Robock,

2008, 2016), and more research is needed so that if policy-makers are tempted to implement SRM they will be making

an informed decision.

Research to date has focused almost exclusively on climate and physical environment responses to SRM such as

precipitation, temperature, and sea ice extent (Irvine et al., 2017). However, any decision to deploy SRM would rest

fundamentally on the technology’s impacts on natural and human systems (e.g., health, agriculture and ecosystems).

Thus, SRM research is at a critical juncture where evaluation of SRM from the climate impacts community is required

urgently in order to advance any contribution of SRM to reducing climate risks. In this chapter, we summarize existing

knowledge of SRM impacts on climate, agriculture, ecosystems, and human health, and highlight priorities for future

research. We focus our summary on the two most widely discussed and, at this time, most plausible SRM techniques:

stratospheric aerosol injection (SAI) and marine cloud brightening (MCB).

24.1 SOLAR RADIATION MANAGEMENT TECHNIQUES

Large tropical volcanic eruptions clearly demonstrate the potential efficacy of SAI. For example, the Mt Pinatubo erup-

tion in 1991 injected 15�20 million tons of sulfur dioxide gas into the stratosphere, which converted to a global cloud

of sulfuric acid droplets, reflecting incoming sunlight back to space and causing a reduction in mean global surface air

temperature of 0.3�0.5�C for 2 years (Soden et al., 2002). However, unlike the aerosols that naturally fall out of the

stratosphere in the years after a volcanic eruption, SAI involves the continued injection of either aerosol particles (e.g.,

calcite) or their precursors (e.g., sulfur dioxide) into the lower stratosphere to sustain global cooling (Fig. 24.1; Irvine

BOX 24.1 Potential Responses to Global Warming

Global warming is a real threat to humanity (IPCC, 2013), and there are a number of possible societal responses:

1. Do nothing, and hope that the problem is not so bad, or future technology will address most of the impacts. This has been

the overwhelming global response so far.

2. Mitigation. Reduce the anthropogenic emissions of greenhouse gases and aerosols that are causing global warming. This is

the most important response, and some steps are being taken, as outlined in the 2015 Paris Agreement at the 21st

Conference of the Parties of the United Nations Framework Convention on Climate Change. But additional mitigation

beyond the Paris pledges will be needed to prevent dangerous anthropogenic climate change.

3. Adaptation. Reducing the impacts of global warming by such actions as retreating from flooding sea coasts and new farming

practices for different climates are already starting, but will not be enough to prevent the worst climate impacts.

4. Geoengineering (also called “climate engineering” or “climate intervention”). Geoengineering is defined as “deliberate

large-scale manipulation of the planetary environment to counteract anthropogenic climate change” (Shepherd et al., 2009).

The term is applied to two quite distinct ideas, removing the primary cause of global warming, CO2, directly from the air

(carbon dioxide removal or CDR), and reflecting sunlight to cool Earth (solar radiation management or SRM). CDR is proba-

bly a good idea, if it could be done on a large scale and inexpensively (National Research Council, 2015a), but it would

take effect slowly. SRM, so far an unproven technology, might cool Earth quickly (Fig. 24.1), but would come with many

potential risks and concerns (National Research Council, 2015b; Robock, 2016; and see Box 24.2). For example, the trade-

offs in SRM effects on temperature and precipitation are such that no currently feasible SRM technique is able to return both

temperature and precipitation to a preindustrial state (Kravitz et al., 2013).

BOX 24.2 Solar Radiation Management Schemes, and Their Potential Benefits and Risks

Although reflecting sunlight using space-based satellites, by brightening the ocean or land surface, or by brightening clouds over

the oceans has been studied, the most serious proposal for SRM is creating a cloud in the stratosphere to reflect sunlight back to

space, mimicking the effects of large volcanic eruptions (National Research Council, 2015b). The benefits, risks, and concerns

of such a scheme are summarized in Table 24.1. See sections of this chapter for further details.
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et al., 2016). In this chapter, we focus primarily on the consequences of the most widely simulated scenario—injection

of sulfur dioxide (SO2) that reacts with water to form a layer of sulfuric acid droplets. Depending on their size, the

resultant aerosol particles would have a lifetime of approximately 1�3 years. Injecting the aerosols into the equatorial

stratosphere at B20 km altitude would make the most effective use of stratospheric currents to spread the aerosol layer

globally and achieve as even as possible a distribution of radiative forcing (Irvine et al., 2016). Initial estimates indi-

cated that an injection of 3�5 million tons of SO2 per year would be sufficient to offset warming from a doubling of

preindustrial CO2 concentration, but accounting for the growth of aerosol particles showed that emissions of 90 million

tons of SO2 per year would be required to offset business as usual greenhouse gas emissions by the end of the current

century (Heckendorn et al., 2009; Niemeier and Timmreck, 2015). This would be the equivalent of 5�7 Mt Pinatubo

eruptions per year. High-altitude aircraft are the most feasible option to deliver the aerosols at an estimated cost of

USD 1�10 billion per million tons of material per year (Robock et al., 2009), which is a relatively inexpensive deploy-

ment, at least in terms of direct economic cost and orders of magnitude less than the estimated cost of decarbonizing

the world’s economy.

Placing an array of mirrors in space to block a small percentage of incoming sunlight has been proposed (Angel,

2006). Although space mirrors remain infeasible at present, simply turning down incoming solar radiation in climate

TABLE 24.1 Risks or Concerns and Benefits of Stratospheric Geoengineering, Adapted from Robock (2008, 2014,

2016). See Relevant Chapter Sections for Further Details

Potential Benefits Potential Risks or Concerns

Physical and biological climate system Physical and biological climate system
1. Reduce surface air temperatures, which could reduce or

reverse negative impacts of global warming, including
floods, droughts, stronger storms, sea ice melting, and
sea level rise.

2. Increased primary productivity (land and oceans)
3. Increased terrestrial CO2 sink
4. Reduced heat stress for coral reefs and other heat-

sensitive ecosystems.
Human impacts
5. Beautiful red and yellow sunsets
6. Increased crop yields relative to global warming

impacts
7. Reduced heat-related mortality
Governance
8. Prospect of geoengineering being implemented could

increase drive for mitigation efforts
Unknowns
9. Unexpected or surprise benefits

1. Drought in Africa and Asia
2. Decreased primary productivity
3. Unexpected shifts in species regional distributions
4. Ozone depletion
5. Continued ocean acidification
6. May not stop ice sheets melting
7. Impacts tropospheric chemistry
8. Rapid warming if geoengineering stopped suddenly

Human impacts
9. Less solar electricity generation

10. Decreased crop yields
11. More sunburn
12. Degrade passive solar heating
13. Effects on airplanes flying in stratosphere
14. Effects on electrical properties of atmosphere
15. Affect satellite remote sensing
16. Degrade terrestrial optical astronomy
17. White appearance of the sky
18. Affect stargazing
Governance
19. Cannot stop geoengineering effects quickly
20. Potential for commercial control of technology
21. Who sets the thermostat?
22. Societal disruption, and conflict among countries over optimal

climate
23. Conflicts with current international treaties
24. Moral hazard � the prospect of geoengineering working could

reduce effort for mitigation efforts
Ethics
25. Military use of geoengineering technology
26. Moral authority � do we have the right to do this?
Unknowns
27. Human error during implementation
28. Unexpected or surprise consequences
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FIGURE 24.1 Comparison of global mean temperature (A) and precipitation (B) trends for RCP4.5—a scenario with moderate greenhouse gas mitigation—and G4—a scenario with greenhouse gas

mitigation equal to RCP4.5, but with stratospheric sulfur dioxide injections of 5 million tons per year beginning in 2020 and ending abruptly in 2070. The increasing temperatures in G4 after 2030 result

from the continuation of greenhouse gas emissions increasing radiative forcing. Absent more aggressive mitigation, maintaining lower temperatures would require increasing aerosol injections. The dif-

ference between G4 and RCP4.5 scenarios for mean temperature (C) and precipitation (D) for the period 2030�2069, showing cooling and reduced precipitation for G4. Solid lines in A and B show

global means and shaded regions show one standard deviation across 12 ensemble members from four climate models (see Trisos et al., 2018). Bold lines in A, B show the first 10 years of geoengineer-

ing (“Implementation”) and the 10 years after geoengineering is stopped (“Termination”).



simulation models (called “sunshade geoengineering”) provides a useful proxy for understanding SAI. For example, the

G1 scenario of the Geoengineering Model Intercomparison Project (GeoMIP) used models that turned down insolation

by up to 5% instead of simulating the more realistic but computationally intensive creation of a stratospheric aerosol

layer (Kravitz et al., 2013). We discuss sunshade geoengineering model results relevant to SAI and note the significant

differences in the resulting climate responses of precipitation (Niemeier et al., 2013), solar radiation partitioning (Xia

et al., 2016), and atmospheric chemistry (Nowack et al., 2016; Xia et al., 2017).

In contrast to SAI, marine cloud brightening (MCB) is a more geographically-specific approach. The proposed

MCB scheme would inject salt from evaporated sea water into the marine boundary layer to directly scatter light and to

increase the reflectivity (albedo), and potentially increase the persistence, of low-lying maritime clouds that reflect

incoming solar radiation (Latham et al., 2008). MCB has an analogue in ship tracks, highly reflective marine clouds

produced by particulate matter in ship exhausts that act as effective cloud condensation nuclei, producing a cooling

effect on the order of �0.1 Wm22 (Schreier et al., 2006). Calculations suggest an increase of approximately 0.06 in

cloud-top albedo would generate cooling sufficient to offset a doubling of CO2 concentration (Latham et al., 2008).

Salter et al. (2008) proposed MCB deployment could be achieved with ships sailing perpendicular to the prevailing

wind so that the injected plume of sea salt did not trail the ship. However, aligning ships at all times perpendicular to

an always changing wind would require excellent weather forecasting, as well as rapid communication of forecasts to

the ships to automatically adjust route in response to anticipated wind changes. Climate models that apply MCB glob-

ally or everywhere within 30� of the equator simulate additional particles in regions that will not form stable low-lying

marine clouds, and have found that the increased direct reflection from those particles may be more effective than cloud

brightening (Ahlm et al., 2017). Partanen et al. (2012) estimated marine boundary layer conditions to be suitable for

MCB across only 3.3% of the global ocean area in three distinct regions that, to achieve a substantial global mean tem-

perature reduction, would be exposed to very significant light limitation and local cooling: the west coast of the United

States, the west coast of Africa in the Southern Hemisphere Tropics and subtropics, and the west coast of South

America. These regions are also those with upwelling of nutrient-rich waters that make for rich fishing grounds, and are

close to large population centers.

24.2 SOLAR RADIATION MANAGEMENT SCENARIO DEVELOPMENT
FOR IMPACT ASSESSMENT

SRM poses a significant challenge to researchers assessing climate impacts on human and natural systems because of

the flexibility to design SRM deployment to achieve a wide variety of specific climate outcomes; for example, either

restoring Arctic sea ice cover or preindustrial precipitation (Irvine et al., 2017). This flexibility in how SRM is imple-

mented (e.g., restricting SAI to a single hemisphere) thus presents both the climate simulation and impact assessment

communities with a potentially overwhelming number of scenarios for analysis. To date, SRM research has focused on

a prescribed set of idealized SRM scenarios developed primarily to understand climate responses to SRM—for example,

SRM used to completely offset all warming from 43CO2—rather than address specific climate policy goals (Keith and

MacMartin, 2015). From a policy perspective the more relevant research focus is instead likely to be an engineering

and design perspective that asks: What SRM strategy will achieve a particular set of climate, and more importantly,

human and natural system outcomes?

One recent suggestion has been to focus impact assessment efforts on a set of more policy-relevant scenarios; for

example, the temporary use of SRM to only partially offset warming and reduce climate impacts as mitigation proceeds

(Keith and MacMartin, 2015; Kravitz et al., 2015). However, this smaller number of scenarios will still be insufficient

to capture the variety of SRM deployment choices and thus address the wide range of questions about SRM impacts on

natural and human systems. A partial solution could be to develop a smaller set of policy-relevant reference scenarios

that have been assessed using complex Earth System and climate impacts models, and then use these to develop compu-

tationally efficient emulators for the climate effects of a wider range of SRM scenarios (Irvine et al., 2017). These sim-

plified methods for climate emulation would include considerable uncertainties in climate responses to greenhouse gas

concentrations and SRM that would limit the confidence in their projections. Thus, while a full scoping of the natural

and human impacts of SRM will remain computationally limited, the integration of climate emulators with impact

assessment could allow for some comparisons and improved understanding of the trade-offs among SRM options

beyond a small and idealized set of scenarios (Irvine et al., 2017).

Ecological, Agricultural, and Health Impacts of Solar Geoengineering Chapter | 24 295



24.3 CLIMATE RESPONSES TO SOLAR RADIATION MANAGEMENT

Stratospheric aerosol injections, based on a volcanic analogue, operate as follows: solar radiation is scattered back to

space and the surface cools (Robock, 2000). By studying observations and using volcanism as an analogue for SAI,

Trenberth and Dai (2007) pointed out the possibility that drought, particularly in the tropics, could result from SAI.

Many of the larger eruptions in the past millennium have also forced El Niño/Southern Oscillation (ENSO) variability

(Emile-Geay et al., 2007; Maher et al., 2015; Khodri et al., 2017).

A “rich get richer, poor get poorer” paradigm states that, with global warming, increased moisture convergence in

areas that already get a lot of precipitation will result in the “wet getting wetter,” while increased moisture divergence

in dry areas will result in the “dry getting drier” (Held and Soden, 2006). However, this paradigm does not hold up in

an SRM world, where the response is very different from that under global warming. Tilmes et al. (2013) analyzed the

hydrological cycle under geoengineering regimes where the solar constant was reduced to achieve preindustrial tem-

peratures in a high CO2 world and compared that to year 1850 preindustrial conditions. They found a strong reduction

in global monsoon rainfall, including in the Asian and West African monsoon regions (see also Fig. 24.1). This illus-

trates the trade-offs in SRM effects on temperature and precipitation so that no currently feasible SRM technique is

able to return the climate to a preindustrial state (Kravitz et al., 2013). Modeling of SAI that achieves B0.9�C of cool-

ing over 40 years when compared against a concurrent simulation of Representative Concentration Pathway (RCP) 6.0

leads to a 3% reduction in precipitation (Xia et al., 2016).

If SAI were ever terminated abruptly, since the sulfate layer that reflects incoming solar radiation and reduces global

mean temperature could only persist, without replenishment, for a couple of years, the climate would return rapidly to

what it would have been had geoengineering not been imposed (Fig. 24.1). In geoengineering experiments that simulate

SAI sufficient to generate a temperature reduction of 1�1.5�C when compared to a scenario with a 1% increase in CO2

per year, that same amount of warming would occur over a 5 to 10-year period following termination (Jones et al.,

2013). This rate of warming is approximately an order of magnitude faster than what would occur with global warming.

The consequence of rapid termination would be to compress the equivalent temperature change experienced during

multiple decades of global warming into less than one decade. Such rapid termination of geoengineering would not be a

desirable policy response, but in the absence of international comity about how to respond to global warming, a climate

policy response that includes rapid termination is possible.

There is no single aerosol optical depth, or latitudinal distribution of aerosol optical depth for sulfuric acid aerosols

that could achieve a spatially uniform cooling that would be equally desirable everywhere (Ricke et al., 2013).

Particular regions have distinct preferences for what constitutes an optimal climate, let alone what constitutes an opti-

mal response to climate change. Thus, with currently feasible SRM technologies, it is unlikely that any single strato-

spheric geoengineering regime could be implemented that would be simultaneously optimal for all regions. Even if the

average global temperature could be reduced with stratospheric geoengineering, there would still be important regional

differences (e.g., Kravitz et al., 2013). For example, the northward shift in the jetstream in the Northern Hemisphere

that has been shown to occur in observations of winters after volcanism and in model simulations of stratospheric

geoengineering could lead to precipitation decreases in areas that receive a large percentage of their rainfall from mid-

latitude storms. Many of these incentives are alien to the mitigation discussion, which assumes a global collective inter-

est. Therefore, unlike with mitigation, because different geoengineering approaches may have disparate regional

impacts, powerful alliances could form to elevate specific climate engineering interests of benefit to some nations and

at the expense of others (Ricke et al., 2013).

Geographical limitations on where effective MCB is possible may be an important constraint on its potential effi-

cacy to reduce global mean temperature and avoid temperature-dependent effects of global warming. Jones et al. (2009,

2012) applied a global mean radiative forcing of B1 Wm22 from MCB in the North Pacific, South Pacific, and South

Atlantic. This led to a decrease in global mean temperature of B0.5�C relative to a moderate emissions mitigation sce-

nario (RCP4.5). However, local climate change brought about by MCB led to substantial increases in precipitation in

India and declines in northeast South America. How political coalitions would develop in an MCB-world versus an

SAI-world is not known, but future research on MCB may emphasize the potential to use the technology as a regional

approach to either supplement SAI, or deal with specific regional climate impacts, such as rapid warming in areas near

coral reefs (Latham et al., 2013).

24.4 AGRICULTURAL IMPACTS

Changes in temperature, precipitation, solar radiation, surface air quality, and CO2 concentration all impact agricultural

productivity. SRM would impact all of these factors affecting agriculture. As changes in these factors become more
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severe the impacts on agricultural productivity will be exacerbated and will vary by crop and by region, generating

potential winners and losers with respect to agriculture for a given geoengineering deployment. Here, we summarize

knowledge on the impact of each factor on crop yields and the interactions among them.

24.4.1 Temperature

The length of the growing season is defined as the longest continuous period of time in a year that soil temperature and

moisture conditions can support plant growth. Increases in the number and the magnitude of extreme daily maximum

temperature events would limit the growing season and negatively affect agricultural production, often causing steep

declines in yield or even crop failure when the temperature threshold (e.g., .30�C) of a particular cultivar is crossed

(Carleton and Hsiang, 2016). Surprisingly, so far, effective adaptation to climate in agriculture has been modest, even

when warming effects are gradual (Carleton and Hsiang, 2016). Thus, SRM might provide a potentially useful tool to

reduce temperature impacts on agriculture. Indeed, with no changes in agriculture practices, models suggest cooling

from SRM would benefit crop production across the tropics as crops are released from heat stress while it would dam-

age crops in high latitudes as SRM would bring temperature below the optimal level for crop growth (Xia et al., 2014).

24.4.2 Precipitation

Evapotranspiration is the removal of water from soil through evaporation from the soil surface and transpiration from

plants. Precipitation affects crop production coupled with temperature by determining the evapotranspiration rate of

crops. There is the potential for large regional differences in precipitation-mediated agricultural impacts from SAI. In

particular, a reduction in monsoon rainfall is a potential consequence of SAI (Robock et al., 2008; Tilmes et al., 2013)

exposing countries such as India—where agriculture productivity is largely governed by the monsoon circulation—to

potential negative agricultural impacts. However, as the cooling effect of SAI also reduces surface evaporation (Tilmes

et al., 2013), reduced precipitation may not necessarily result in decreasing soil moisture—the available water for plant

growth. Further studies are needed to understand how precipitation change from geoengineering would affect

agriculture.

24.4.3 Solar Radiation

Solar radiation reaching Earth’s surface is the primary driver of plant photosynthesis. Plant photosynthesis tends to

increase nonlinearly with incident photosynthetically active radiation (PAR), and saturates at light levels that are often

exceeded on bright days during the growing season. Once a saturation level is reached, the photosynthesis process stops,

as does crop growth. In contrast, under cloudy skies or those with light-scattering aerosols, incoming radiation is more

diffuse, producing a more uniform irradiance of the plant canopy with a smaller fraction of the canopy likely to be

light-saturated (Mercado et al., 2009). As a result, such diffuse radiation results in higher light use efficiencies by plant

canopies and has much less tendency to cause canopy photosynthetic saturation (Roderick et al., 2001). In addition, dif-

fuse radiation leads to plant radiation use efficiencies at least twice those for direct sunbeam radiation (Gu et al., 2002).

Hence, the net effect on photosynthesis of radiation changes associated with an increase in clouds or scattering aerosols

depends on the balance between a reduction in the total PAR (which tends to reduce photosynthesis) and an increase in

the diffuse fraction of the PAR (which tends to increase photosynthesis). SAI, which would scatter incoming sunlight,

would decrease total solar radiation but increase diffuse radiation reaching the surface. This diffuse radiation enhance-

ment would promote terrestrial plant photosynthesis and may benefit agriculture (Xia et al., 2016).

24.4.4 Surface Ozone Concentration

Surface ozone adversely affects agriculture (e.g., Mauzerall and Wang, 2001; Ainsworth et al., 2012). The causes of

this reduction in agricultural productivity include reduced plant net photosynthesis, increased susceptibility of crops to

disease, and reduced growth rate (Mauzerall and Wang, 2001). Avnery et al. (2011) concluded that in the year 2000

ozone-induced global crop yield reductions ranged from 8.5�14% for soybeans, 3.9�15% for wheat, and 2.2�5.5% for

maize in comparison to the theoretical yield without ozone damage. Artificially reducing solar insolation with sulfate

SAI would cause changes in atmospheric chemistry and dynamics that would impact surface ozone concentration, with

strong regional differences. For example, if SRM started at 2020 and continued for 50 years, sunshade geoengineering
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would increase surface ozone concentration whereas sulfate SAI would reduce surface ozone concentration (Xia et al.,

2017), and may thus benefit agriculture.

24.4.5 Ultraviolet (UV) Radiation

UV irradiance at Earth’s surface is dependent on latitude, altitude, cloud coverage, and season. Under sulfate SAI, both

the optical properties of the aerosols themselves and the depletion of the stratospheric ozone layer—which protects the

Earth’s surface from UV radiation from the Sun—would impact surface UV radiation exposure (Heckendorn et al.,

2009; Tilmes et al., 2012). The amount of sulfate injection and its distribution determine stratospheric ozone depletion

and changes in global cloud coverage. Simulating SAI of 2 million tons of sulfur per year, Tilmes et al. (2012) pre-

dicted a UV radiation increase of 6% and 12% in northern and southern high latitudes, respectively. Heckendorn et al.

(2009) found that an injection of 5 million tons per year would cause a stratospheric ozone depletion of 7 and 11% in

northern and southern high latitudes which would result in surface UV increases of 21 and 33%, respectively.

Since the ozone hole was discovered there have been extensive studies on the potential damage to plants from UV

(reviewed by Ballaré et al., 2011). Field experiments manipulating UV showed that with a 20�30% UV increase due to

a 10% ozone depletion, the reduction in plant growth rate was 6% or less (Allen et al., 1998; Ballaré et al., 2011).

Whether increased UV radiation damages or benefits crop production is debated (e.g., Wargent and Jordan, 2013;

Williamson et al., 2014). Increased UV inhibits leaf expansion (Searles et al., 2001) with smaller and fewer leaves slow-

ing plant growth, but plants may also adapt to higher UV environments by producing pigmentation compounds that

reduce UV penetration and protect plant photosynthesis (Bassman, 2004). Further studies are needed on whether UV

radiation changes from SAI would impact crop yields. However, the above-mentioned increases in surface UV pre-

dicted for sulfate SAI are mild and restricted to high latitude regions such that the impact on agriculture may be rela-

tively small, with the potential exception of regions already exposed to the ozone hole. Proposals to use alternative

aerosol particles such as calcite for SAI may instead increase stratospheric ozone (Keith et al., 2016) and reduce UV

surface radiation, potentially increasing plant growth.

24.4.6 Combined Effects on Agriculture

Very few studies have examined SRM impacts on agriculture in any detail. Pongratz et al. (2012) built a statistical

model using observations of temperature, precipitation, CO2 concentration, and crop yields, and used climate model

output to study agriculture impacts of sulfate injection geoengineering. Global rice, maize, and wheat yields were pre-

dicted to increase due to the combination of CO2 fertilization and reduced heat stress in sulfate injection geoengineering

compared to a doubling of CO2 without geoengineering. However, possible rice yield losses were predicted to occur in

the middle latitudes of the Northern Hemisphere.

Xia et al. (2014) used a process-based crop model, the Decision Support System for Agrotechnology Transfer

(DSSAT), to simulate crop responses to sunshade geoengineering in China. The crop model used the output from 10

global climate models that simulated the GeoMIP G2 scenario—starting in 2020, a reduction in solar radiation to bal-

ance a 1% per year increase in CO2 concentration (1pctCO2) for 50 years. Without changing land management prac-

tices, compared to CO2 fertilization and climate change from a 1% per year increase in CO2, the effect of SRM with

CO2 fertilization was predicted to have little impact on rice production in China (�3.0 6 4.0 million tons per year).

This is because the CO2 fertilization effect compensates for the negative effects on rice production of changes in precip-

itation, temperature, and sunlight from SRM. In contrast, SRM was predicted to increase Chinese maize production by

18.1 6 6.0 Mt/yr (13.9 6 5.9%) relative to 1pctCO2 because lower temperatures from SRM reduced heat stress in

more heat-sensitive maize seeds. The termination of SRM showed negligible impacts on rice production but led to a

19.6 Mt/yr (11.9%) reduction of maize production.

A recent study on groundnuts in India found that, relative to climate change from a moderate emissions scenario

(RCP4.5), groundnut yields decreased up to 20% for a scenario with SAI sufficient to offset all temperature increase

from RCP4.5 (Yang et al., 2016). Yield reductions were mainly a result of enhanced water stress from reduced summer

monsoon rainfall. When SAI was terminated, the groundnut yield tended back to the level of the RCP4.5 scenario.

Yang et al. considered changes in temperature, precipitation, solar radiation, and CO2. However, since the comparison

was between scenarios which have the same CO2 concentration, the CO2 fertilization effect was canceled out.

A single study has simulated crop responses to MCB geoengineering. Parkes et al. (2015) focused on spring wheat

in northeastern China and groundnut in West Africa under global warming from a 1% CO2 increase per year (capped at

560 ppm), and compared this with a MCB scenario for three ocean regions (North Pacific, South Pacific, and South
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Atlantic) totaling 5% of the global ocean surface. Relative to the global warming scenario, MCB was predicted to

increase yields for both wheat and groundnuts and reduce crop failure rates as a result of cooling and, in the West

African case, enhanced precipitation.

To date, agriculture impact studies have considered climate changes of temperature, precipitation, and total solar

radiation. However, other climate factors discussed at the beginning of this section, including UV, partitioning of solar

radiation (diffuse and direct), and ozone are important to agriculture. Crop model improvements are needed to include

these processes, and to further understanding of how solar geoengineering impacts on agriculture will vary by crop and

by region. In addition, climate changes from solar geoengineering might influence the ecology of pest and pathogen

species, as well as the crop transport and storage chain. Further studies that include these ecosystem and economic

impacts are needed to fully understand how geoengineering might influence agriculture and food availability.

24.5 ECOLOGICAL IMPACTS

Assessments of the ecological impacts of SRM are extremely limited, especially regarding impacts on biodiversity and

ecosystems. The creation of a high CO2 and low temperature climate that could result from SRM is unprecedented in

recent Earth history. This lack of historical analogues limits inference of ecological impacts and raises novel questions

about how organisms and ecosystems may respond (McCormack et al., 2016).

24.5.1 Productivity on Land and in the Oceans

Increased CO2 concentrations increase plant photosynthesis (Allen et al., 1987) and reduce transpiration, improving

plant water-use efficiency (reviewed by Leakey et al., 2009). These direct effects of CO2 are a major driver of vegeta-

tion change, increasing plant growth across the tropics, especially in arid regions. Because SRM does not reduce CO2

concentrations this CO2 fertilization effect is common to scenarios with and without SRM. However, changes in other

climate variables due to SRM have potentially significant impacts on plant productivity. Compared to global warming

without SRM, sunshade geoengineering is predicted to increase net primary productivity (NPP)—a measure of the total

carbon flux from the atmosphere to plants—in tropical regions by reducing heat stress on plants, but decrease NPP at

high latitudes as reduced temperature increases from SRM prevent the increased plant growth forecast to occur in these

cold regions with global warming (Glienke et al., 2015). However, this result varies among models mainly due to model

inclusion or exclusion of a nitrogen cycle (Jones et al., 2013; Glienke et al., 2015). In addition to these regional effects

of cooling on vegetation growth, SAI may increase plant photosynthetic rates due to the increase in diffuse radiation

from an aerosol layer producing a more uniform irradiance of the plant canopy (Xia et al., 2016). Theoretically, under

SAI, the combination of enhanced diffuse radiation and cooling would increase plant photosynthesis, and the cooling

would suppress plant and soil respiration, as shown by a modeling study of the effects of the Mt. Pinatubo eruption in

1991 (Mercado et al., 2009). Those effects from SAI are expected to increase the land carbon sink substantially, moder-

ating CO2 increases. However, these benefits may be overstated as SAI simulations have not yet included nitrogen and

phosphorous nutrient limitations on plant growth explicitly, and the increase in photosynthesis due to more diffuse light

may be balanced by a decrease in photosynthesis from the lower direct sunlight due to SAI (Kalidindi et al., 2014).

Similar to SAI, relative to no geoengineering, MCB is predicted to increase terrestrial NPP in the tropics and sup-

press NPP at high latitudes (Jones et al., 2012). However, an important difference is the potential for stronger differ-

ences in NPP responses among tropical regions, depending on which ocean regions are selected for MCB. In particular,

climate simulations show MCB in the South Atlantic could reduce precipitation in the Amazon or northeastern South

America substantially with corresponding negative impacts on plant productivity (Jones et al., 2009; Jones et al., 2012).

Only two studies have assessed potential impacts of SRM on marine ecosystem productivity, none for SAI. Using

an Earth system model, Partanen et al. (2016) found that MCB decreased global ocean NPP slightly (B1%) compared

to global warming without MCB. However, there were major regional differences in NPP due to reduced light availabil-

ity in regions where MCB was deployed, especially off the coast of Peru where phytoplankton growth is light-limited

in the model. In contrast, Hardman-Mountford et al. (2013) suggest a 90% reduction of light from MCB would redis-

tribute but not decrease NPP within the water column. However, their model used a one-dimensional water column

(i.e., depth cross-section) for a single region, and although it depicts the marine ecosystem in more detail than Partanen

et al. (2016) it does not include movement of nutrients across regions as in an Earth system model. A clear next step is

to repeat the Hardman-Mountford et al. (2013) study in a water column more typical of water columns in candidate

MCB regions.
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24.5.2 Biodiversity and Ecosystem Impacts

To avoid extinction from climate change, species can either respond by adapting to new conditions within their current

geographic ranges or by moving to track their climate conditions across space (e.g., geographic range shifts) or time

(e.g., earlier spring emergence). Only a single study has assessed potential SRM impacts on global biodiversity. By cal-

culating climate velocities—the speeds and directions that species would need to move to track climate changes (i.e., to

stay in their climate niche)—Trisos et al. (2018) estimated that were SRM ever terminated abruptly the movement

speeds required to keep pace with climate change would likely exceed dispersal capacities for many species, increasing

local extinction risk in marine and terrestrial biodiversity hot spots compared to global warming without SRM.

In the ocean, studies have assessed tropical coral reef responses to SRM. Anomalously high ocean temperatures

induce coral bleaching when corals eject their photosynthetic symbionts, often resulting in colony death. By reducing

sea surface temperatures, both SAI and MCB could reduce the likelihood of high temperature events, enhancing coral

reef survival and the extent of suitable habitat compared to global warming without SRM (Latham et al., 2013;

Kwiatkowski et al., 2015). Compared to a reference global warming scenario without SRM, ocean acidification would

increase slightly under SRM due to the increased solubility of CO2 in cooler water (Keller et al., 2014). Although corals

are sensitive to increasing ocean acidification this was of secondary importance to heat stress in the maintenance of

suitable coral habitat (Couce et al., 2013; Kwiatkowski et al., 2015).

On land, positive effects of SRM on plant productivity have the potential to drive significant change in grassland

and savannah biomes. Elevated CO2 concentration has been suggested as a major driver of tree and shrub invasion into

tropical grassy ecosystems (Bond and Midgley, 2000, 2012), with negative impacts for grassland biodiversity, ecotour-

ism, and livestock grazing. Additional cooling from SRM could further advantage C3 photosynthetic trees over C4 pho-

tosynthetic grasses, speeding up the woody encroachment of grassland biomes and the transformation of savannahs to

closed forests. Enhanced woody thickening of these ecosystems could reduce wildfire frequencies relative to global

warming without geoengineering and alter the global carbon cycle. Earth system models that include dynamic vegeta-

tion and wildfire dynamics are needed to further understand the potential impacts of SRM on terrestrial tropical biomes.

In the case of SAI, deposition of sulfate aerosols will in general increase the acidity of precipitation which is known

to damage ecosystems when the sulfate is sufficiently concentrated. However, for an injection of 5 million tons of SO2

per year, Kravitz et al. (2009) found that only ecosystems already close to thresholds for acid rain deposition would be

susceptible to damage.

24.6 HEALTH IMPACTS

There have been no quantitative studies published of SRM impacts on human health. Sunshade geoengineering could

increase surface ozone (Nowack et al., 2016; Xia et al., 2017) which, in addition to reducing crop yields (Mauzerall and

Wang, 2001), would have substantial negative impacts on human health (Silva et al., 2013). In contrast, simulations of

atmospheric chemistry suggest SAI would decrease surface ozone (Xia et al., 2017), but with an increase of UV radia-

tion, which increases the risk of skin cancer (Tilmes et al., 2012). Aerosols from SAI would be deposited at the Earth’s

surface posing a risk of chronic health effects from prolonged exposure. Most aerosols proposed for SAI have known or

suspected negative effects on respiratory and cardiovascular health with other health effects such as metabolic abnor-

malities depending on the aerosol (Effiong and Neitzel, 2016). A preliminary study by Eastham (2015) suggested that

for sulfate SAI almost all of the descending aerosols would be removed by wet deposition so that the direct contribution

of sulfate aerosols to aerosol particulate matter at the surface would be very low. The same analysis suggested that, per

degree of cooling, sulfate SAI could result in an additional 26,000 premature deaths per year. However, these direct

impacts from SAI on human health are likely minor compared to the direct and indirect effects from changes in crop

yield, heat-related mortality, drought, or flood exposure under geoengineered climates. The inclusion of these impacts

into integrated assessments is required to generate more complete forecasts of solar geoengineering impacts on human

health relative to other global warming scenarios.

24.7 CONCLUSION

Little is known about the potential environmental and social impacts of SRM. The increasing attention on SRM as a

potential tool to offset climate impacts, buying time for additional mitigation, CDR, and adaptation efforts, demands

development of more policy-relevant SRM scenarios and their inclusion into the mainstream of climate impacts assess-

ment. Ultimately decisions on whether and how to deploy SRM will be based primarily on the potential for SRM to

reduce environmental and social impacts. Estimates of these impacts must be up to the task.
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