Edited by Zinta Zommers and Keith Alverson

Resilience

The Science of Adaptation to Climate Change

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-811891-7

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Working together to grow libraries in developing countries

www.elsevier.com • www.bookaid.org

Publisher: Candice Janco Acquisition Editor: Laura Kelleher Editorial Project Manager: Tasha Frank Production Project Manager: Nilesh Kumar Shah Cover Designer: Christian Bilbow

Typeset by MPS Limited, Chennai, India

Cover Image: IrinaK/Shutterstock - Working traffic lights over streets flooded by Hurricane Harvey in Houston, Texas, September 2017

Contents

xiii
XV
xvii
xix

Section I Adaptation Needs

1. Extreme Events: Trends and Risk Assessment Methodologies

Adam H. Sobel and Michael K. Tippett

1.1 Impact of Climate Change on Extremes	3		
1.1.1 Heat Waves	3		
1.1.2 Extreme Precipitation Events	4		
1.1.3 Droughts	5		
1.1.4 Tropical Cyclones	6		
1.1.5 Severe Convection	6		
1.1.6 Human Impacts	7		
1.2 Catastrophe Modeling and Risk			
Assessment for Adaptation	7		
1.2.1 Historical Observations and Extreme			
Value Theory	7		
1.2.2 Catastrophe Models	8		
1.2.3 Dynamical Models	9		
1.3 Different Questions	9		
References			
Further Reading			

2. Adapting to Sea-Level Rise

Robert J. Nicholls

2.1	Introduction	13
2.2	Coastal Systems	14
2.3	Global-Mean and Relative Sea-Level	
	Change	16
2.4	Impacts of Sea-Level Rise	17
2.5	Recent Impacts of Sea-Level Rise	18
2.6	Future Impacts of Sea-Level Rise	19

2.7 Adaptation to Sea-Level Rise	19
2.7.1 Adaptation Strategies and Options	20
2.7.2 Adaptation Processes and	
Frameworks	23
2.7.3 Choosing Between Adaptation	
Measures/Options	24
2.7.4 Adaptation Experience	25
2.8 Discussion/Conclusions	
Acknowledgments	26
References	26
Further Reading	29

3. Climate Change, Climate Extremes, and Global Food Production—Adaptation in the Agricultural Sector

Elisabeth Vogel and Rachelle Meyer

3.1	Introduction	31
3.2	Bibliographic Network Analysis	32
	3.2.1 Methodology	32
	3.2.2 Overview of the Literature	33
3.3	The Context: Main Challenges for Food	
	Security in the 21st Century	36
	3.3.1 Population Growth and Changes in	
	Consumption Patterns Increase	
	Food Demand	36
	3.3.2 Limitations in Land Area Available	
	for Agricultural Production	36
	3.3.3 Yield Trends and Yield Gaps	37
3.4	Impacts of Climate Change and Climate	
	Extreme Events on Crop Production	37
	3.4.1 Introduction	37
	3.4.2 Climate Trends and Agricultural	
	Production	37
	3.4.3 Changes in the Variability of	
	Climate and Climate Extreme Events	38
	3.4.4 Impacts of Increased CO ₂	
	Concentrations	38
	3.4.5 Other Impacts of Climate Change	
	on Food Production	39
3.5	Adapting Global Crop Production to	
	Climate Change	39

3.5.1 Types of Adaptation	39
3.5.2 Adaptation Options	40
3.5.3 Challenges and Opportunities	41
3.6 Conclusions	44
Acknowledgments	44
References	44

4 Tracking Adaptation Progress at the Global Level: Key Issues and Priorities

Anne Olhoff, Elina Väänänen and Barney Dickson

4.1 Introduction		
4.2 The Emerging Global Perspective on		
Adaptation	51	
4.3 Tracking Progress in Adaptation at the		
Global Level	52	
4.4 Priorities for Tracking Adaptation Under the		
UNFCCC	53	
4.4.1 Agreeing on What to Track	53	
4.4.2 Agreeing on How to Track Progress	57	
4.4.3 Tackling Data and Information		
Challenges	57	
4.5 Summary	59	
References		
Further Reading		

5. Evolution of Climate Change Adaptation Policy and Negotiation

Saleemul Huq, Yousuf Mahid and Nadine Suliman

5.1	Introduction			
5.2	2 Overview of Climate Change Adaptation: An Evolving Challenge			
5.3	Current Policy and Legal Framework for			
	Climate Change Adaptation Under the			
	UNFCCC	64		
	5.3.1 Adoption in the Convention	64		
5.4	Conference of Parties (COP) and Major			
	Adaptation Milestones Under the			
	Convention	65		
	5.4.1 Impact Observation and Assessment			
	of Risks and Vulnerability	65		
	5.4.2 Moving Towards Planning and			
	Implementation Phase	67		
	5.4.3 Exchange of Information and Lessons			
	Learned	67		
	5.4.4 Scaling up Implementation Strategies			
	and Coordinating the Evolving			
	Adaptation Agenda	67		
	5.4.5 The Paris Agreement and Adaptation	69		
5.5	Climate Change Adaptation Initiatives in			
	Other International Forums	69		
	5.5.1 The Sendai Framework for Disaster			
	Risk Reduction 2015–30, Hyogo			

Framework for Action $2005-15$, and	
International Strategy for Disaster	
Risk Reduction	69
5.5.2 Convention on Biological	
Diversity (CBD)	70
5.5.3 United Nations Convention to	
Combat Desertification	71
5.5.4 European Climate Adaptation	
Platform	71
5.6 National Level Progress on Adaptation	
Policy Initiatives	71
5.7 Major Gaps and the Way Forward	72
5.8 Conclusion	73
References	74

Section II

Adaptation Actions—Hazards, Ecosystems, Sectors

6 .	Flood Risk Management in the United
	Kingdom: Putting Climate Change
	Adaptation Into Practice in the
	Thames Estuary

Darren Lumbroso and David Ramsbottom

6.1 Introduction	79
6.2 Future Change and Adaptation	81
6.2.1 Future Changes	81
6.2.2 Adaptation	82
6.3 The Overall Approach to Flood Risk	
Management Under the TE2100 Plan	82
6.4 Background to the Indicators	85
6.5 The Philosophy Behind the Development	
of Flood Risk Management Options for the	
Thames Estuary	85
6.6 Conclusions	86
References	87
Further Reading	87

7. The Science of Adaptation to Extreme Heat

Ethan D. Coffel, Alex de Sherbinin, Radley M. Horton, Kathryn Lane, Stefan Kienberger and Olga Wilhelmi

7.1	1 Introduction		89
7.2	Heat	Projections	89
	7.2.1	Microclimates and the Urban	
		Heat Island	91
	7.2.2	Population Vulnerability	92
	7.2.3	Health Impacts of Heat Stress	93
	7.2.4	Urban Heat, Air Quality,	

and Infrastructure 94

7.3 Adaptation Strategies	95
7.3.1 Urban Design	95
7.3.2 Behavior	97
7.4 Conclusions	98
References	98

8. Measuring Drought Resilience Through Community Capitals

Andries J. Jordaan, Dusan M. Sakulski, Curtis Mashimbye and Fumiso Mayumbe

8.1	Introduction	105
8.2	Description of Study Area	105
8.3	Drought Hazard Risk Assessment	107
8.4	Vulnerability and Coping Capacity	
	Indicators	108
	8.4.1 Weighting of Indicators	108
	8.4.2 Community Capitals Analysis	109
8.5	Results of the Vulnerability and Coping	
	Capacity Assessment	110
8.6	Conclusion	113
Refe	erences	114
Furt	ther Reading	115

9. Community-Based Adaptation: Alaska Native Communities Design a Relocation Process to Protect Their Human Rights

Robin Bronen

9.1	Introc	luction	117
9.2	Meth	ods	119
	9.2.1	Governance Institutions to Protect	
		in Place	119
	9.2.2	Alaska	120
	9.2.3	Shishmaref	121
	9.2.4	Quinhagak	121
	9.2.5	Relocation Institutional Framework	122
	9.2.6	Components of an Integrated	
		Social-Ecological Assessment	
		and Monitoring Tool	124
9.3	Concl	usion	124
Refe	erence	s	125
Further Reading		126	

10. California: It's Complicated: Drought, Drinking Water, and Drylands

Gillisann Harootunian

10.1	Introduction: The Drought, Drylands,	
	and Ecosystem Services	127
10.2	Scientific Evidence: Climate Change	
	and the US West	129

10.3 Taking Every Drop: The Mining	
of Water Sources and the Drinking	
Water Crisis	130
10.4 Legislative Response: Surface Water	
and Groundwater	133
10.5 Legislative Response: Drinking Water	
Crisis	136
10.6 Fiscal Response: Drinking Water Crisis	138
10.7 Conclusion	140
References	140
Further Reading	142

11. Advancing Coastal Climate Resilience: Inclusive Data and Decision-Making for Small Island Communities

Roger-Mark De Souza and Judi Clarke

11.1 Introduction and Context11.2 An Approach to Coastal Community Engagement to Build the	143
Evidence Base	144
11.3 Key Steps	145
11.3.1 Contextualize the Approach	145
11.3.2 Survey/Interviews	145
11.3.3 Participatory Mapping	146
11.3.4 Risk Assessment and	
Adaptation Analysis	146
11.4 Where Could Such an Approach be	
Tested?	147
11.5 Conclusion	148
Acknowledgment	149
References	149
Further Reading	149

12. Building Urban Resilience to Address Urbanization and Climate Change

Julie Greenwalt, Nina Raasakka and Keith Alverson

 12.1 Urbanization and Climate Change: Defining the 21st Century 12.2 Urban Troubles Trifecta: Environmental Degradation Climate Change and 	151
Vulnerable Populations	152
12.3 Towards Urban Resilience and Global	
Sustainable Development	155
12.3.1 Multilateral Agreements on Cities,	
Climate Change, and Sustainable	
Development	155
12.3.2 Urban Resilience: Local Action,	
Cooperation and Understanding	157
References	162
Further Reading	163

13. Climate-Smart Agriculture in Southeast Asia: Lessons from Community-Based Adaptation Programs in the Philippines and Timor-Leste

Alvin Chandra and Karen E. McNamara

13.1	Introduction	165
13.2	Methods	167
	13.2.1 Sampling and Data Collection	167
	13.2.2 Data Analysis	168
13.3	Results: Characterizes, Similarities,	
	and Differences of CSA Practices	169
	13.3.1 Characteristics of Climate-Smart	
	Agriculture	169
	13.3.2 Institutional: Climate-Resiliency	
	Field Schools Versus Consortium	
	Approach	169
	13.3.3 Finance: Bottom-Up Budgeting	
	Versus Microfinance	172
	13.3.4 Market: Climate Risks Versus	
	Market Shocks	173
13.4	Discussion: Implications for Theory	
	and Practice	175
13.5	Conclusion and Recommendations	176
Ackn	owledgements	177
Refer	rences	177

14. Challenges in Building Climate-Resilient Quality Energy Infrastructure in Africa

Ashbindu Singh, H. Gyde Lund and Jane Barr

14.1 Introduction	181
14.2 Potential Impact of Climate Change	
in Africa	181
14.3 Adaptation Options in Energy Sector	182
14.3.1 Climate Adaptation in	
Hydropower	184
14.4 Response	186
14.5 Conclusions	187
References	188

Section III

Tools and Approaches

15. Ethics, Communities, and Climate Resilience: An Examination by Case Studies

> Kerry W. Bowman, Alan Warner and Yousef M. Manialawy

15.1 Background and Significance: The Need
for Climate Resilience193

15.2 Ethics, Social Capital, and Climate	
Resilience	196
15.3 Ethics, the Precautionary Principle,	
and the Need for Climate Resilience	197
15.4 Can Ethics Strengthen Climate	
Resilience?	197
15.5 Indigenous People: Vulnerability and	
Knowledge	198
15.5.1 Detailed Case Studies	199
15.6 Conclusion	203
References	203
Photographic Sources	204
Further Reading	204

16. A Framework for Assessing the Effectiveness of Ecosystem-Based Approaches to Adaptation

Hannah Reid, Amanda Bourne, Halcvone Muller. Karen Podvin. Sarshen Scorgie and Victor Orindi **16.1** Introduction 207 16.2 How Do We Know If EbA Is Effective? 209 16.3 Applying the Framework—Is EbA Effective? 209 16.3.1 Effectiveness for Human Societies 210 16.3.2 Effectiveness for the Ecosystem 212 16.3.3 Financial and Economic Effectiveness 212 **16.4** Policy and Institutional Issues 213 16.5 Conclusion 214 Acknowledgment 214 References 214

17. The Global Framework for Climate Services Adaptation Programme in Africa

Janak Pathak and Filipe D.F. Lúcio

17.1 Introduction	217
17.2 The GFCS Adaptation Programme	
in Africa: Phase I	218
17.3 Engagement for the Implementation	
of Climate Services	219
17.4 Operationalization of Climate	
Services	220
17.4.1 Tanzania	220
17.4.2 Malawi	220
17.5 The Inception of Phase I	221
17.6 Progress Based on GFCS Five Pillars	221
17.6.1 User Interface Platform	221
17.6.2 Climate Services Information	
System	223
17.6.3 Observation and Monitoring	223

17.6.4 Research, Modeling, and	
Prediction	224
17.6.5 Capacity Development	224
17.7 Project Outcome/Benefits	224
17.8 Conclusion	226
References	226

18. Supporting Farmers Facing Drought: Lessons from a Climate Service in Jamaica

John Furlow, James Buizer, Simon J. Mason and Glenroy Brown

18.1	Introduction		
	18.1.1	Policy Development Process	227
	18.1.2	Developing a Climate Service	229
18.2	Technic	al Details of the Drought	
	Informa	ation	230
	18.2.1	The Standardized Precipitation	
		Index	230
	18.2.2	Drought Forecasting	
		Procedure	231
18.3	From To	ool to Service: Communicating	
Drought Information to Farmers			231
18.4	Impact	Evaluation	232
	18.4.1	Evaluating the Impact of the	
		Drought Information Service	
		on Agricultural Production	232
	18.4.2	Approach	232
	18.4.3	Findings	233
	18.4.4	Limitations of the Study	234
18.5	Recom	mendations Regarding Climate	
	Service	S	234
18.6	Conclu	sions	235
Acknowledgment			235
References			235

19. Forecast-Based Financing and Climate Change Adaptation: Uganda Makes History Using Science to Prepare for Floods

Eddie Wasswa Jjemba, Brian Kanaahe Mwebaze, Julie Arrighi, Erin Coughlan de Perez and Meghan Bailey

19.1 Introduction	237
19.2 Developing the SOPs	238
19.3 Overview of SOPs	239
19.4 The Triggers	239
19.5 Distributing Relief Items	239
19.6 Preparing to Assess Impacts	240
19.7 Impact Results	240
19.8 Key Lessons	241
19.9 Conclusion	242
References	242

20. Managing Risks from Climate Change on the African Continent: The African Risk Capacity (ARC) as an Innovative Risk Financing Mechanism

Ekhosuehi Iyahen and Joanna Syroka

20.1 Introduction	243
20.2 Innovative Financing for Climate	
Change Adaptation: The Extreme	
Climate	
Facility (XCF)	245
20.3 XCF Research & Development	247
20.4 Climate Adaptation Plans	247
20.5 Extreme Climate Index	248
20.6 Financial & Legal Structure	250
20.7 Conclusion	252
References	252
Further Reading	252

21. Climate Change Adaptation in Ethiopia: Developing a Method to Assess Program Options

Karyn M. Fox, Suzanne Nelson, Timothy R. Frankenberger and Mark Langworthy

21.1	Introduction 2		
21.2	Concepts for CCA Options Analysis		
	21.2.1 Climate-Related Shocks, Climate		
	Change Adaptation,		
	and Resilience	254	
	21.2.2 What Are CCA Options?	256	
21.3	Methodology	256	
	21.3.1 Selection of Adaptation Options		
	for Analysis	256	
	21.3.2 Selection and Application of the		
	Research Tools	256	
	21.3.3 Research Process: Validation		
	and Consensus Building	257	
21.4	Findings	259	
	21.4.1 Findings on GRAD and PRIME		
	Adaptation Options	259	
	21.4.2 Findings Regarding Implementation	n	
	of the Decision-Making Tools	262	
21.5	Concluding Remarks and		
	Recommendations	263	
	21.5.1 Recommendations for CCA		
	Investment	263	
21.6	Recommendations for Implementation		
	of the Decision-Making Tools	263	
21.7	Investing in Enabling Conditions	264	
Ackn	owledgments	264	
Reterences 2		264	
Further Reading		265	

22. Social Capital as a Determinant of Resilience: Implications for Adaptation Policy

Siobhan E. Kerr

22.1 Introduction	267
22.2 Risk and Uneven Resilience	268
22.3 Defining Social Capital	268
22.4 Social Capital and Resilience	269
22.5 Measuring Social Capital	272
22.6 Conclusions and Further Study	273
References	273

Section IV Emerging Issues

23. Climate-Resilient Development in Fragile Contexts

Sarah Henly-Shepard, Zinta Zommers, Eliot Levine and Daniel Abrahams

23.1	Introdu	iction	279
23.2	State of	f the Evidence	280
	23.2.1	Climate-Fragility Nexus	280
	23.2.2	Challenges to Breaking Down the	
		Humanitarian Aid/Development	
		Wall	281
	23.2.3	The Need for New Frameworks	281
23.3	On the	Frontlines	282
	23.3.1	Overview	282
	23.3.2	Case Study 1:	
		The Climate-Conflict Nexus:	
		Lessons from Karamoja	282
	23.3.3	Case Study 2:	
		Climate Change and Famine	
		in Ethiopia	284
23.4	Conclu	sions and Recommendations	287
	23.4.1	Bridging Solutions	288
Ackn	owledge	ements	289
Refer	References		
Further Reading			290

24. Ecological, Agricultural, and Health Impacts of Solar Geoengineering

Christopher H. Trisos, Corey Gabriel, Alan Robock and Lili Xia

24.1	Solar Radiation Management	
	Techniques	292
24.2	Solar Radiation Management Scenario	
	Development for Impact Assessment	29 5
24.3	Climate Responses to Solar Radiation	
	Management	296

24.4 Agricultural Impacts		
24.4.1 Temperature	297	
24.4.2 Precipitation	297	
24.4.3 Solar Radiation	297	
24.4.4 Surface Ozone Concentration	297	
24.4.5 Ultraviolet (UV) Radiation	298	
24.4.6 Combined Effects on		
Agriculture	298	
24.5 Ecological Impacts		
24.5.1 Productivity on Land and in		
the Oceans	299	
24.5.2 Biodiversity and Ecosystem		
Impacts	300	
24.6 Health Impacts	300	
24.7 Conclusion		
Acknowledgments		
References		

25. The Progression of Climate Change, Human Rights, and Human Mobility in the Context of Transformative Resilience—A Perspective Over the Pacific

Cosmin Corendea and Tanvi Mani

25.1 Introduction	305
25.2 Contextualizing Resilience Withi	in the
Migration Narrative in the Pacific	c 306
25.3 Understanding Human Mobility	in the
Pacific Context	308
25.4 Case Studies That Support a Reg	gional
Approach	309
25.4.1 Fiji	309
25.4.2 Vanuatu	311
25.5 Conclusion	311
References	312
Further Reading	313
Annex	315

26. Integrated Loss and Damage–Climate Change Adaptation–Disaster Risk Reduction Framework: The Case of the Philippines

Ebinezer R. Florano

26.1 Introduction	317
26.2 Climate Change and Disasters in the	
Philippines	318
26.3 Policy and Institutional Frameworks for	
Determining L&D	320
26.4 Determining L&D: The Disaster Risk	
Reduction Approach	320
26.5 Determining L&D: The Climate Change	
Adaptation Approach	321

			220
26.6 Integrated L&D–CCA–DRR		27.2 Learning from Other Fields	330
Framework	323	27.3 Hierarchy of Evidence	330
26.7 Conclusions	325	27.4 Challenges and Application to	
References	325	Adaptation	332
		27.5 Intelligent Tinkering	333
		27.6 Steps Forward	334
Section V		References	335
Next Steps			
-		Author Index	337
27 Intelligent Tinkering in Climate Change Adaptation	:	Subject Index	343

Zinta Zommers and Keith Alverson

27.1 Introduction

329

Chapter 24

Ecological, Agricultural, and Health Impacts of Solar Geoengineering

Christopher H. Trisos¹, Corey Gabriel^{2,3}, Alan Robock² and Lili Xia²

¹National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, MD, United States, ²Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States, ³Scripps Institution of Oceanography, La Jolla, CA, United States

Chapter Outline

24.1	Solar Radiation Management Techniques	292	24.4.5 Ultraviolet (UV) Radiation	298
24.2	Solar Radiation Management Scenario Development for		24.4.6 Combined Effects on Agriculture	298
	Impact Assessment	295	24.5 Ecological Impacts	299
24.3	Climate Responses to Solar Radiation Management	296	24.5.1 Productivity on Land and in the Oceans	299
24.4	Agricultural Impacts	296	24.5.2 Biodiversity and Ecosystem Impacts	300
	24.4.1 Temperature	297	24.6 Health Impacts	300
	24.4.2 Precipitation	297	24.7 Conclusion	300
	24.4.3 Solar Radiation	297	Acknowledgments	301
	24.4.4 Surface Ozone Concentration	297	References	301

Proposals to engineer the climate are not new (Budyko, 1974; Latham, 1990), but received little attention until Nobel Laureate Paul Crutzen's 2006 essay on the potential to cool the Earth by injecting sunlight-reflecting aerosols into the stratosphere (Crutzen, 2006)—breaking the taboo on geoengineering research. Since Crutzen's essay, slow and stalling progress on emissions reductions (Peters et al., 2013), increasing attribution of negative impacts in social and environmental systems to climate change (Carleton and Hsiang, 2016), and the ambitious goal in the Paris Climate Agreement to hold global warming to below 2°C (Rogelj et al., 2016) have all heightened attention on solar geoengineering as a potential tool to reduce the impacts of climate change.

The term "geoengineering" (also called "climate engineering" or "climate intervention") refers to suggestions to artificially enhance Earth's albedo, called albedo modification or solar radiation management (SRM), and to suggestions to remove carbon dioxide from the atmosphere to reduce the greenhouse effect, called carbon dioxide removal (CDR). They are quite distinct in technology, risks, costs, and benefits. Here we only address SRM. The aim of proposed SRM techniques is to increase the reflection of sunlight back to space to cool the climate. SRM is not typically considered climate change adaptation because the aim of proposed schemes is to reduce climate impacts on human and natural systems by reducing the amount of global warming rather than human and natural systems adapting to cope with higher temperatures. Thus, SRM might be used in combination with, or to buy time for, further mitigation, adaptation, and CDR efforts. For example, if climate sensitivity to carbon dioxide increasing is at the mid—high end of estimates then using some moderate and temporary amount of SRM in combination with aggressive emissions mitigation may keep global mean temperatures below 2°C and prevent climate impacts from more extreme warming (Smith and Rasch, 2013; Keith and MacMartin, 2015). The consideration of SRM technologies therefore requires the development of strong governance mechanisms and must be considered in close coordination with mitigation and adaptation efforts. Indeed, to deploy SRM in isolation would be reckless (Box 24.1).

Climate model simulations have shown that SRM techniques may be able to offset a substantial fraction of the change in temperature and precipitation from increased atmospheric greenhouse gas concentrations (Kravitz et al., 2013).

BOX 24.1 Potential Responses to Global Warming

Global warming is a real threat to humanity (IPCC, 2013), and there are a number of possible societal responses:

- 1. Do nothing, and hope that the problem is not so bad, or future technology will address most of the impacts. This has been the overwhelming global response so far.
- 2. Mitigation. Reduce the anthropogenic emissions of greenhouse gases and aerosols that are causing global warming. This is the most important response, and some steps are being taken, as outlined in the 2015 Paris Agreement at the 21st Conference of the Parties of the United Nations Framework Convention on Climate Change. But additional mitigation beyond the Paris pledges will be needed to prevent dangerous anthropogenic climate change.
- 3. Adaptation. Reducing the impacts of global warming by such actions as retreating from flooding sea coasts and new farming practices for different climates are already starting, but will not be enough to prevent the worst climate impacts.
- 4. Geoengineering (also called "climate engineering" or "climate intervention"). Geoengineering is defined as "deliberate large-scale manipulation of the planetary environment to counteract anthropogenic climate change" (Shepherd et al., 2009). The term is applied to two quite distinct ideas, removing the primary cause of global warming, CO₂, directly from the air (carbon dioxide removal or CDR), and reflecting sunlight to cool Earth (solar radiation management or SRM). CDR is probably a good idea, if it could be done on a large scale and inexpensively (National Research Council, 2015a), but it would take effect slowly. SRM, so far an unproven technology, might cool Earth quickly (Fig. 24.1), but would come with many potential risks and concerns (National Research Council, 2015b; Robock, 2016; and see Box 24.2). For example, the tradeoffs in SRM effects on temperature and precipitation are such that no currently feasible SRM technique is able to return both temperature and precipitation to a preindustrial state (Kravitz et al., 2013).

BOX 24.2 Solar Radiation Management Schemes, and Their Potential Benefits and Risks

Although reflecting sunlight using space-based satellites, by brightening the ocean or land surface, or by brightening clouds over the oceans has been studied, the most serious proposal for SRM is creating a cloud in the stratosphere to reflect sunlight back to space, mimicking the effects of large volcanic eruptions (National Research Council, 2015b). The benefits, risks, and concerns of such a scheme are summarized in Table 24.1. See sections of this chapter for further details.

However, simulations have also shown trade-offs in SRM effects on temperature and precipitation so that no SRM technique is able to completely reverse anthropogenic climate change and return the climate to a preindustrial state (Kravitz et al., 2013). Furthermore, the risks associated with stratospheric SRM may outweigh the potential benefits (Robock, 2008, 2016), and more research is needed so that if policy-makers are tempted to implement SRM they will be making an informed decision.

Research to date has focused almost exclusively on climate and physical environment responses to SRM such as precipitation, temperature, and sea ice extent (Irvine et al., 2017). However, any decision to deploy SRM would rest fundamentally on the technology's impacts on natural and human systems (e.g., health, agriculture and ecosystems). Thus, SRM research is at a critical juncture where evaluation of SRM from the climate impacts community is required urgently in order to advance any contribution of SRM to reducing climate risks. In this chapter, we summarize existing knowledge of SRM impacts on climate, agriculture, ecosystems, and human health, and highlight priorities for future research. We focus our summary on the two most widely discussed and, at this time, most plausible SRM techniques: stratospheric aerosol injection (SAI) and marine cloud brightening (MCB).

24.1 SOLAR RADIATION MANAGEMENT TECHNIQUES

Large tropical volcanic eruptions clearly demonstrate the potential efficacy of SAI. For example, the Mt Pinatubo eruption in 1991 injected 15-20 million tons of sulfur dioxide gas into the stratosphere, which converted to a global cloud of sulfuric acid droplets, reflecting incoming sunlight back to space and causing a reduction in mean global surface air temperature of $0.3-0.5^{\circ}$ C for 2 years (Soden et al., 2002). However, unlike the aerosols that naturally fall out of the stratosphere in the years after a volcanic eruption, SAI involves the continued injection of either aerosol particles (e.g., calcite) or their precursors (e.g., sulfur dioxide) into the lower stratosphere to sustain global cooling (Fig. 24.1; Irvine

TABLE 24.1 Risks or Concerns and Benefits of Stratospheric Geoengineering, Adapted from Robock (2008, 2014, 2016). See Relevant Chapter Sections for Further Details

Potential Benefits	Potential Risks or Concerns
 <i>Physical and biological climate system</i> Reduce surface air temperatures, which could reduce or reverse negative impacts of global warming, including floods, droughts, stronger storms, sea ice melting, and sea level rise. Increased primary productivity (land and oceans) Increased terrestrial CO₂ sink Reduced heat stress for coral reefs and other heatsensitive ecosystems. <i>Human impacts</i> Beautiful red and yellow sunsets Increased crop yields relative to global warming impacts Reduced heat-related mortality <i>Governance</i> Prospect of geoengineering being implemented could increase drive for mitigation efforts <i>Unknowns</i> Unexpected or surprise benefits 	Physical and biological climate system 1. Drought in Africa and Asia 2. Decreased primary productivity 3. Unexpected shifts in species regional distributions 4. Ozone depletion 5. Continued ocean acidification 6. May not stop ice sheets melting 7. Impacts tropospheric chemistry 8. Rapid warming if geoengineering stopped suddenly Human impacts 9. Less solar electricity generation 10. Decreased crop yields 11. More sunburn 12. Degrade passive solar heating 13. Effects on airplanes flying in stratosphere 14. Effects on electrical properties of atmosphere 15. Affect satellite remote sensing 16. Degrade terrestrial optical astronomy 17. White appearance of the sky 18. Affect stargazing Governance 19. Cannot stop geoengineering effects quickly 20. Potential for commercial control of technology 21. Who sets the thermostat? 22. Societal disruption, and conflict among countries over optimal climate 23. Conflicts with current international treaties 24. Moral hazard – the prospect of geoengineering working could reduce effort for mitigation efforts Ethics 25

et al., 2016). In this chapter, we focus primarily on the consequences of the most widely simulated scenario—injection of sulfur dioxide (SO₂) that reacts with water to form a layer of sulfuric acid droplets. Depending on their size, the resultant aerosol particles would have a lifetime of approximately 1-3 years. Injecting the aerosols into the equatorial stratosphere at ~20 km altitude would make the most effective use of stratospheric currents to spread the aerosol layer globally and achieve as even as possible a distribution of radiative forcing (Irvine et al., 2016). Initial estimates indicated that an injection of 3-5 million tons of SO₂ per year would be sufficient to offset warming from a doubling of preindustrial CO₂ concentration, but accounting for the growth of aerosol particles showed that emissions of 90 million tons of SO₂ per year would be required to offset business as usual greenhouse gas emissions by the end of the current century (Heckendorn et al., 2009; Niemeier and Timmreck, 2015). This would be the equivalent of 5-7 Mt Pinatubo eruptions per year. High-altitude aircraft are the most feasible option to deliver the aerosols at an estimated cost of USD 1-10 billion per million tons of material per year (Robock et al., 2009), which is a relatively inexpensive deployment, at least in terms of direct economic cost and orders of magnitude less than the estimated cost of decarbonizing the world's economy.

Placing an array of mirrors in space to block a small percentage of incoming sunlight has been proposed (Angel, 2006). Although space mirrors remain infeasible at present, simply turning down incoming solar radiation in climate

FIGURE 24.1 Comparison of global mean temperature (A) and precipitation (B) trends for RCP4.5—a scenario with moderate greenhouse gas mitigation—and G4—a scenario with greenhouse gas mitigation equal to RCP4.5, but with stratospheric sulfur dioxide injections of 5 million tons per year beginning in 2020 and ending abruptly in 2070. The increasing temperatures in G4 after 2030 result from the continuation of greenhouse gas emissions increasing radiative forcing. Absent more aggressive mitigation, maintaining lower temperatures would require increasing aerosol injections. The difference between G4 and RCP4.5 scenarios for mean temperature (C) and precipitation (D) for the period 2030–2069, showing cooling and reduced precipitation for G4. Solid lines in A and B show global means and shaded regions show one standard deviation across 12 ensemble members from four climate models (see Trisos et al., 2018). Bold lines in A, B show the first 10 years of geoengineering ("Implementation") and the 10 years after geoengineering is stopped ("Termination").

simulation models (called "sunshade geoengineering") provides a useful proxy for understanding SAI. For example, the G1 scenario of the Geoengineering Model Intercomparison Project (GeoMIP) used models that turned down insolation by up to 5% instead of simulating the more realistic but computationally intensive creation of a stratospheric aerosol layer (Kravitz et al., 2013). We discuss sunshade geoengineering model results relevant to SAI and note the significant differences in the resulting climate responses of precipitation (Niemeier et al., 2013), solar radiation partitioning (Xia et al., 2016), and atmospheric chemistry (Nowack et al., 2016; Xia et al., 2017).

In contrast to SAI, marine cloud brightening (MCB) is a more geographically-specific approach. The proposed MCB scheme would inject salt from evaporated sea water into the marine boundary layer to directly scatter light and to increase the reflectivity (albedo), and potentially increase the persistence, of low-lying maritime clouds that reflect incoming solar radiation (Latham et al., 2008). MCB has an analogue in ship tracks, highly reflective marine clouds produced by particulate matter in ship exhausts that act as effective cloud condensation nuclei, producing a cooling effect on the order of -0.1 Wm^{-2} (Schreier et al., 2006). Calculations suggest an increase of approximately 0.06 in cloud-top albedo would generate cooling sufficient to offset a doubling of CO₂ concentration (Latham et al., 2008). Salter et al. (2008) proposed MCB deployment could be achieved with ships sailing perpendicular to the prevailing wind so that the injected plume of sea salt did not trail the ship. However, aligning ships at all times perpendicular to an always changing wind would require excellent weather forecasting, as well as rapid communication of forecasts to the ships to automatically adjust route in response to anticipated wind changes. Climate models that apply MCB globally or everywhere within 30° of the equator simulate additional particles in regions that will not form stable low-lying marine clouds, and have found that the increased direct reflection from those particles may be more effective than cloud brightening (Ahlm et al., 2017). Partanen et al. (2012) estimated marine boundary layer conditions to be suitable for MCB across only 3.3% of the global ocean area in three distinct regions that, to achieve a substantial global mean temperature reduction, would be exposed to very significant light limitation and local cooling: the west coast of the United States, the west coast of Africa in the Southern Hemisphere Tropics and subtropics, and the west coast of South America. These regions are also those with upwelling of nutrient-rich waters that make for rich fishing grounds, and are close to large population centers.

24.2 SOLAR RADIATION MANAGEMENT SCENARIO DEVELOPMENT FOR IMPACT ASSESSMENT

SRM poses a significant challenge to researchers assessing climate impacts on human and natural systems because of the flexibility to design SRM deployment to achieve a wide variety of specific climate outcomes; for example, either restoring Arctic sea ice cover or preindustrial precipitation (Irvine et al., 2017). This flexibility in how SRM is implemented (e.g., restricting SAI to a single hemisphere) thus presents both the climate simulation and impact assessment communities with a potentially overwhelming number of scenarios for analysis. To date, SRM research has focused on a prescribed set of idealized SRM scenarios developed primarily to understand climate responses to SRM—for example, SRM used to completely offset all warming from $4 \times CO_2$ —rather than address specific climate policy goals (Keith and MacMartin, 2015). From a policy perspective the more relevant research focus is instead likely to be an engineering and design perspective that asks: What SRM strategy will achieve a particular set of climate, and more importantly, human and natural system outcomes?

One recent suggestion has been to focus impact assessment efforts on a set of more policy-relevant scenarios; for example, the temporary use of SRM to only partially offset warming and reduce climate impacts as mitigation proceeds (Keith and MacMartin, 2015; Kravitz et al., 2015). However, this smaller number of scenarios will still be insufficient to capture the variety of SRM deployment choices and thus address the wide range of questions about SRM impacts on natural and human systems. A partial solution could be to develop a smaller set of policy-relevant reference scenarios that have been assessed using complex Earth System and climate impacts models, and then use these to develop computationally efficient emulators for the climate effects of a wider range of SRM scenarios (Irvine et al., 2017). These simplified methods for climate emulation would include considerable uncertainties in climate responses to greenhouse gas concentrations and SRM that would limit the confidence in their projections. Thus, while a full scoping of the natural and human impacts of SRM will remain computationally limited, the integration of climate emulators with impact assessment could allow for some comparisons and improved understanding of the trade-offs among SRM options beyond a small and idealized set of scenarios (Irvine et al., 2017).

24.3 CLIMATE RESPONSES TO SOLAR RADIATION MANAGEMENT

Stratospheric aerosol injections, based on a volcanic analogue, operate as follows: solar radiation is scattered back to space and the surface cools (Robock, 2000). By studying observations and using volcanism as an analogue for SAI, Trenberth and Dai (2007) pointed out the possibility that drought, particularly in the tropics, could result from SAI. Many of the larger eruptions in the past millennium have also forced El Niño/Southern Oscillation (ENSO) variability (Emile-Geay et al., 2007; Maher et al., 2015; Khodri et al., 2017).

A "rich get richer, poor get poorer" paradigm states that, with global warming, increased moisture convergence in areas that already get a lot of precipitation will result in the "wet getting wetter," while increased moisture divergence in dry areas will result in the "dry getting drier" (Held and Soden, 2006). However, this paradigm does not hold up in an SRM world, where the response is very different from that under global warming. Tilmes et al. (2013) analyzed the hydrological cycle under geoengineering regimes where the solar constant was reduced to achieve preindustrial temperatures in a high CO₂ world and compared that to year 1850 preindustrial conditions. They found a strong reduction in global monsoon rainfall, including in the Asian and West African monsoon regions (see also Fig. 24.1). This illustrates the trade-offs in SRM effects on temperature and precipitation so that no currently feasible SRM technique is able to return the climate to a preindustrial state (Kravitz et al., 2013). Modeling of SAI that achieves ~0.9°C of cooling over 40 years when compared against a concurrent simulation of Representative Concentration Pathway (RCP) 6.0 leads to a 3% reduction in precipitation (Xia et al., 2016).

If SAI were ever terminated abruptly, since the sulfate layer that reflects incoming solar radiation and reduces global mean temperature could only persist, without replenishment, for a couple of years, the climate would return rapidly to what it would have been had geoengineering not been imposed (Fig. 24.1). In geoengineering experiments that simulate SAI sufficient to generate a temperature reduction of $1-1.5^{\circ}$ C when compared to a scenario with a 1% increase in CO₂ per year, that same amount of warming would occur over a 5 to 10-year period following termination (Jones et al., 2013). This rate of warming is approximately an order of magnitude faster than what would occur with global warming. The consequence of rapid termination would be to compress the equivalent temperature change experienced during multiple decades of global warming into less than one decade. Such rapid termination of geoengineering would not be a desirable policy response, but in the absence of international comity about how to respond to global warming, a climate policy response that includes rapid termination is possible.

There is no single aerosol optical depth, or latitudinal distribution of aerosol optical depth for sulfuric acid aerosols that could achieve a spatially uniform cooling that would be equally desirable everywhere (Ricke et al., 2013). Particular regions have distinct preferences for what constitutes an optimal climate, let alone what constitutes an optimal response to climate change. Thus, with currently feasible SRM technologies, it is unlikely that any single stratospheric geoengineering regime could be implemented that would be simultaneously optimal for all regions. Even if the average global temperature could be reduced with stratospheric geoengineering, there would still be important regional differences (e.g., Kravitz et al., 2013). For example, the northward shift in the jetstream in the Northern Hemisphere that has been shown to occur in observations of winters after volcanism and in model simulations of stratospheric geoengineering could lead to precipitation decreases in areas that receive a large percentage of their rainfall from midlatitude storms. Many of these incentives are alien to the mitigation discussion, which assumes a global collective interest. Therefore, unlike with mitigation, because different geoengineering approaches may have disparate regional impacts, powerful alliances could form to elevate specific climate engineering interests of benefit to some nations and at the expense of others (Ricke et al., 2013).

Geographical limitations on where effective MCB is possible may be an important constraint on its potential efficacy to reduce global mean temperature and avoid temperature-dependent effects of global warming. Jones et al. (2009, 2012) applied a global mean radiative forcing of $\sim 1 \text{ Wm}^{-2}$ from MCB in the North Pacific, South Pacific, and South Atlantic. This led to a decrease in global mean temperature of $\sim 0.5^{\circ}$ C relative to a moderate emissions mitigation scenario (RCP4.5). However, local climate change brought about by MCB led to substantial increases in precipitation in India and declines in northeast South America. How political coalitions would develop in an MCB-world versus an SAI-world is not known, but future research on MCB may emphasize the potential to use the technology as a regional approach to either supplement SAI, or deal with specific regional climate impacts, such as rapid warming in areas near coral reefs (Latham et al., 2013).

24.4 AGRICULTURAL IMPACTS

Changes in temperature, precipitation, solar radiation, surface air quality, and CO₂ concentration all impact agricultural productivity. SRM would impact all of these factors affecting agriculture. As changes in these factors become more

severe the impacts on agricultural productivity will be exacerbated and will vary by crop and by region, generating potential winners and losers with respect to agriculture for a given geoengineering deployment. Here, we summarize knowledge on the impact of each factor on crop yields and the interactions among them.

24.4.1 Temperature

The length of the growing season is defined as the longest continuous period of time in a year that soil temperature and moisture conditions can support plant growth. Increases in the number and the magnitude of extreme daily maximum temperature events would limit the growing season and negatively affect agricultural production, often causing steep declines in yield or even crop failure when the temperature threshold (e.g., $>30^{\circ}$ C) of a particular cultivar is crossed (Carleton and Hsiang, 2016). Surprisingly, so far, effective adaptation to climate in agriculture has been modest, even when warming effects are gradual (Carleton and Hsiang, 2016). Thus, SRM might provide a potentially useful tool to reduce temperature impacts on agriculture. Indeed, with no changes in agriculture practices, models suggest cooling from SRM would benefit crop production across the tropics as crops are released from heat stress while it would damage crops in high latitudes as SRM would bring temperature below the optimal level for crop growth (Xia et al., 2014).

24.4.2 Precipitation

Evapotranspiration is the removal of water from soil through evaporation from the soil surface and transpiration from plants. Precipitation affects crop production coupled with temperature by determining the evapotranspiration rate of crops. There is the potential for large regional differences in precipitation-mediated agricultural impacts from SAI. In particular, a reduction in monsoon rainfall is a potential consequence of SAI (Robock et al., 2008; Tilmes et al., 2013) exposing countries such as India—where agriculture productivity is largely governed by the monsoon circulation—to potential negative agricultural impacts. However, as the cooling effect of SAI also reduces surface evaporation (Tilmes et al., 2013), reduced precipitation may not necessarily result in decreasing soil moisture—the available water for plant growth. Further studies are needed to understand how precipitation change from geoengineering would affect agriculture.

24.4.3 Solar Radiation

Solar radiation reaching Earth's surface is the primary driver of plant photosynthesis. Plant photosynthesis tends to increase nonlinearly with incident photosynthetically active radiation (PAR), and saturates at light levels that are often exceeded on bright days during the growing season. Once a saturation level is reached, the photosynthesis process stops, as does crop growth. In contrast, under cloudy skies or those with light-scattering aerosols, incoming radiation is more diffuse, producing a more uniform irradiance of the plant canopy with a smaller fraction of the canopy likely to be light-saturated (Mercado et al., 2009). As a result, such diffuse radiation results in higher light use efficiencies by plant canopies and has much less tendency to cause canopy photosynthetic saturation (Roderick et al., 2001). In addition, diffuse radiation leads to plant radiation use efficiencies at least twice those for direct sunbeam radiation (Gu et al., 2002). Hence, the net effect on photosynthesis of radiation changes associated with an increase in clouds or scattering aerosols depends on the balance between a reduction in the total PAR (which tends to reduce photosynthesis) and an increase in the diffuse fraction of the PAR (which tends to increase photosynthesis). SAI, which would scatter incoming sunlight, would decrease total solar radiation but increase diffuse radiation reaching the surface. This diffuse radiation enhancement would promote terrestrial plant photosynthesis and may benefit agriculture (Xia et al., 2016).

24.4.4 Surface Ozone Concentration

Surface ozone adversely affects agriculture (e.g., Mauzerall and Wang, 2001; Ainsworth et al., 2012). The causes of this reduction in agricultural productivity include reduced plant net photosynthesis, increased susceptibility of crops to disease, and reduced growth rate (Mauzerall and Wang, 2001). Avnery et al. (2011) concluded that in the year 2000 ozone-induced global crop yield reductions ranged from 8.5-14% for soybeans, 3.9-15% for wheat, and 2.2-5.5% for maize in comparison to the theoretical yield without ozone damage. Artificially reducing solar insolation with sulfate SAI would cause changes in atmospheric chemistry and dynamics that would impact surface ozone concentration, with strong regional differences. For example, if SRM started at 2020 and continued for 50 years, sunshade geoengineering

would increase surface ozone concentration whereas sulfate SAI would reduce surface ozone concentration (Xia et al., 2017), and may thus benefit agriculture.

24.4.5 Ultraviolet (UV) Radiation

UV irradiance at Earth's surface is dependent on latitude, altitude, cloud coverage, and season. Under sulfate SAI, both the optical properties of the aerosols themselves and the depletion of the stratospheric ozone layer—which protects the Earth's surface from UV radiation from the Sun—would impact surface UV radiation exposure (Heckendorn et al., 2009; Tilmes et al., 2012). The amount of sulfate injection and its distribution determine stratospheric ozone depletion and changes in global cloud coverage. Simulating SAI of 2 million tons of sulfur per year, Tilmes et al. (2012) predicted a UV radiation increase of 6% and 12% in northern and southern high latitudes, respectively. Heckendorn et al. (2009) found that an injection of 5 million tons per year would cause a stratospheric ozone depletion of 7 and 11% in northern and southern high latitudes which would result in surface UV increases of 21 and 33%, respectively.

Since the ozone hole was discovered there have been extensive studies on the potential damage to plants from UV (reviewed by Ballaré et al., 2011). Field experiments manipulating UV showed that with a 20–30% UV increase due to a 10% ozone depletion, the reduction in plant growth rate was 6% or less (Allen et al., 1998; Ballaré et al., 2011). Whether increased UV radiation damages or benefits crop production is debated (e.g., Wargent and Jordan, 2013; Williamson et al., 2014). Increased UV inhibits leaf expansion (Searles et al., 2001) with smaller and fewer leaves slowing plant growth, but plants may also adapt to higher UV environments by producing pigmentation compounds that reduce UV penetration and protect plant photosynthesis (Bassman, 2004). Further studies are needed on whether UV radiation changes from SAI would impact crop yields. However, the above-mentioned increases in surface UV predicted for sulfate SAI are mild and restricted to high latitude regions such that the impact on agriculture may be relatively small, with the potential exception of regions already exposed to the ozone hole. Proposals to use alternative aerosol particles such as calcite for SAI may instead increase stratospheric ozone (Keith et al., 2016) and reduce UV surface radiation, potentially increasing plant growth.

24.4.6 Combined Effects on Agriculture

Very few studies have examined SRM impacts on agriculture in any detail. Pongratz et al. (2012) built a statistical model using observations of temperature, precipitation, CO_2 concentration, and crop yields, and used climate model output to study agriculture impacts of sulfate injection geoengineering. Global rice, maize, and wheat yields were predicted to increase due to the combination of CO_2 fertilization and reduced heat stress in sulfate injection geoengineering compared to a doubling of CO_2 without geoengineering. However, possible rice yield losses were predicted to occur in the middle latitudes of the Northern Hemisphere.

Xia et al. (2014) used a process-based crop model, the Decision Support System for Agrotechnology Transfer (DSSAT), to simulate crop responses to sunshade geoengineering in China. The crop model used the output from 10 global climate models that simulated the GeoMIP G2 scenario—starting in 2020, a reduction in solar radiation to balance a 1% per year increase in CO₂ concentration (1pctCO2) for 50 years. Without changing land management practices, compared to CO₂ fertilization and climate change from a 1% per year increase in CO₂, the effect of SRM with CO₂ fertilization was predicted to have little impact on rice production in China (-3.0 ± 4.0 million tons per year). This is because the CO₂ fertilization effect compensates for the negative effects on rice production of changes in precipitation, temperature, and sunlight from SRM. In contrast, SRM was predicted to increase Chinese maize production by 18.1 \pm 6.0 Mt/yr (13.9 \pm 5.9%) relative to 1pctCO2 because lower temperatures from SRM reduced heat stress in more heat-sensitive maize seeds. The termination of SRM showed negligible impacts on rice production but led to a 19.6 Mt/yr (11.9%) reduction of maize production.

A recent study on groundnuts in India found that, relative to climate change from a moderate emissions scenario (RCP4.5), groundnut yields decreased up to 20% for a scenario with SAI sufficient to offset all temperature increase from RCP4.5 (Yang et al., 2016). Yield reductions were mainly a result of enhanced water stress from reduced summer monsoon rainfall. When SAI was terminated, the groundnut yield tended back to the level of the RCP4.5 scenario. Yang et al. considered changes in temperature, precipitation, solar radiation, and CO_2 . However, since the comparison was between scenarios which have the same CO_2 concentration, the CO_2 fertilization effect was canceled out.

A single study has simulated crop responses to MCB geoengineering. Parkes et al. (2015) focused on spring wheat in northeastern China and groundnut in West Africa under global warming from a 1% CO₂ increase per year (capped at 560 ppm), and compared this with a MCB scenario for three ocean regions (North Pacific, South Pacific, and South

Atlantic) totaling 5% of the global ocean surface. Relative to the global warming scenario, MCB was predicted to increase yields for both wheat and groundnuts and reduce crop failure rates as a result of cooling and, in the West African case, enhanced precipitation.

To date, agriculture impact studies have considered climate changes of temperature, precipitation, and total solar radiation. However, other climate factors discussed at the beginning of this section, including UV, partitioning of solar radiation (diffuse and direct), and ozone are important to agriculture. Crop model improvements are needed to include these processes, and to further understanding of how solar geoengineering impacts on agriculture will vary by crop and by region. In addition, climate changes from solar geoengineering might influence the ecology of pest and pathogen species, as well as the crop transport and storage chain. Further studies that include these ecosystem and economic impacts are needed to fully understand how geoengineering might influence agriculture and food availability.

24.5 ECOLOGICAL IMPACTS

Assessments of the ecological impacts of SRM are extremely limited, especially regarding impacts on biodiversity and ecosystems. The creation of a high CO_2 and low temperature climate that could result from SRM is unprecedented in recent Earth history. This lack of historical analogues limits inference of ecological impacts and raises novel questions about how organisms and ecosystems may respond (McCormack et al., 2016).

24.5.1 Productivity on Land and in the Oceans

Increased CO₂ concentrations increase plant photosynthesis (Allen et al., 1987) and reduce transpiration, improving plant water-use efficiency (reviewed by Leakey et al., 2009). These direct effects of CO₂ are a major driver of vegetation change, increasing plant growth across the tropics, especially in arid regions. Because SRM does not reduce CO_2 concentrations this CO_2 fertilization effect is common to scenarios with and without SRM. However, changes in other climate variables due to SRM have potentially significant impacts on plant productivity. Compared to global warming without SRM, sunshade geoengineering is predicted to increase net primary productivity (NPP)—a measure of the total carbon flux from the atmosphere to plants-in tropical regions by reducing heat stress on plants, but decrease NPP at high latitudes as reduced temperature increases from SRM prevent the increased plant growth forecast to occur in these cold regions with global warming (Glienke et al., 2015). However, this result varies among models mainly due to model inclusion or exclusion of a nitrogen cycle (Jones et al., 2013; Glienke et al., 2015). In addition to these regional effects of cooling on vegetation growth, SAI may increase plant photosynthetic rates due to the increase in diffuse radiation from an aerosol layer producing a more uniform irradiance of the plant canopy (Xia et al., 2016). Theoretically, under SAI, the combination of enhanced diffuse radiation and cooling would increase plant photosynthesis, and the cooling would suppress plant and soil respiration, as shown by a modeling study of the effects of the Mt. Pinatubo eruption in 1991 (Mercado et al., 2009). Those effects from SAI are expected to increase the land carbon sink substantially, moderating CO₂ increases. However, these benefits may be overstated as SAI simulations have not yet included nitrogen and phosphorous nutrient limitations on plant growth explicitly, and the increase in photosynthesis due to more diffuse light may be balanced by a decrease in photosynthesis from the lower direct sunlight due to SAI (Kalidindi et al., 2014).

Similar to SAI, relative to no geoengineering, MCB is predicted to increase terrestrial NPP in the tropics and suppress NPP at high latitudes (Jones et al., 2012). However, an important difference is the potential for stronger differences in NPP responses among tropical regions, depending on which ocean regions are selected for MCB. In particular, climate simulations show MCB in the South Atlantic could reduce precipitation in the Amazon or northeastern South America substantially with corresponding negative impacts on plant productivity (Jones et al., 2009; Jones et al., 2012).

Only two studies have assessed potential impacts of SRM on marine ecosystem productivity, none for SAI. Using an Earth system model, Partanen et al. (2016) found that MCB decreased global ocean NPP slightly ($\sim 1\%$) compared to global warming without MCB. However, there were major regional differences in NPP due to reduced light availability in regions where MCB was deployed, especially off the coast of Peru where phytoplankton growth is light-limited in the model. In contrast, Hardman-Mountford et al. (2013) suggest a 90% reduction of light from MCB would redistribute but not decrease NPP within the water column. However, their model used a one-dimensional water column (i.e., depth cross-section) for a single region, and although it depicts the marine ecosystem in more detail than Partanen et al. (2016) it does not include movement of nutrients across regions as in an Earth system model. A clear next step is to repeat the Hardman-Mountford et al. (2013) study in a water column more typical of water columns in candidate MCB regions.

24.5.2 Biodiversity and Ecosystem Impacts

To avoid extinction from climate change, species can either respond by adapting to new conditions within their current geographic ranges or by moving to track their climate conditions across space (e.g., geographic range shifts) or time (e.g., earlier spring emergence). Only a single study has assessed potential SRM impacts on global biodiversity. By calculating climate velocities—the speeds and directions that species would need to move to track climate changes (i.e., to stay in their climate niche)—Trisos et al. (2018) estimated that were SRM ever terminated abruptly the movement speeds required to keep pace with climate change would likely exceed dispersal capacities for many species, increasing local extinction risk in marine and terrestrial biodiversity hot spots compared to global warming without SRM.

In the ocean, studies have assessed tropical coral reef responses to SRM. Anomalously high ocean temperatures induce coral bleaching when corals eject their photosynthetic symbionts, often resulting in colony death. By reducing sea surface temperatures, both SAI and MCB could reduce the likelihood of high temperature events, enhancing coral reef survival and the extent of suitable habitat compared to global warming without SRM (Latham et al., 2013; Kwiatkowski et al., 2015). Compared to a reference global warming scenario without SRM, ocean acidification would increase slightly under SRM due to the increased solubility of CO₂ in cooler water (Keller et al., 2014). Although corals are sensitive to increasing ocean acidification this was of secondary importance to heat stress in the maintenance of suitable coral habitat (Couce et al., 2013; Kwiatkowski et al., 2015).

On land, positive effects of SRM on plant productivity have the potential to drive significant change in grassland and savannah biomes. Elevated CO_2 concentration has been suggested as a major driver of tree and shrub invasion into tropical grassy ecosystems (Bond and Midgley, 2000, 2012), with negative impacts for grassland biodiversity, ecotourism, and livestock grazing. Additional cooling from SRM could further advantage C3 photosynthetic trees over C4 photosynthetic grasses, speeding up the woody encroachment of grassland biomes and the transformation of savannahs to closed forests. Enhanced woody thickening of these ecosystems could reduce wildfire frequencies relative to global warming without geoengineering and alter the global carbon cycle. Earth system models that include dynamic vegetation and wildfire dynamics are needed to further understand the potential impacts of SRM on terrestrial tropical biomes.

In the case of SAI, deposition of sulfate aerosols will in general increase the acidity of precipitation which is known to damage ecosystems when the sulfate is sufficiently concentrated. However, for an injection of 5 million tons of SO_2 per year, Kravitz et al. (2009) found that only ecosystems already close to thresholds for acid rain deposition would be susceptible to damage.

24.6 HEALTH IMPACTS

There have been no quantitative studies published of SRM impacts on human health. Sunshade geoengineering could increase surface ozone (Nowack et al., 2016; Xia et al., 2017) which, in addition to reducing crop yields (Mauzerall and Wang, 2001), would have substantial negative impacts on human health (Silva et al., 2013). In contrast, simulations of atmospheric chemistry suggest SAI would decrease surface ozone (Xia et al., 2017), but with an increase of UV radiation, which increases the risk of skin cancer (Tilmes et al., 2012). Aerosols from SAI would be deposited at the Earth's surface posing a risk of chronic health effects from prolonged exposure. Most aerosols proposed for SAI have known or suspected negative effects on respiratory and cardiovascular health with other health effects such as metabolic abnormalities depending on the aerosol (Effiong and Neitzel, 2016). A preliminary study by Eastham (2015) suggested that for sulfate SAI almost all of the descending aerosols would be removed by wet deposition so that the direct contribution of sulfate aerosols to aerosol particulate matter at the surface would be very low. The same analysis suggested that, per degree of cooling, sulfate SAI could result in an additional 26,000 premature deaths per year. However, these direct impacts from SAI on human health are likely minor compared to the direct and indirect effects from changes in crop yield, heat-related mortality, drought, or flood exposure under geoengineered climates. The inclusion of these impacts into integrated assessments is required to generate more complete forecasts of solar geoengineering impacts on human health relative to other global warming scenarios.

24.7 CONCLUSION

Little is known about the potential environmental and social impacts of SRM. The increasing attention on SRM as a potential tool to offset climate impacts, buying time for additional mitigation, CDR, and adaptation efforts, demands development of more policy-relevant SRM scenarios and their inclusion into the mainstream of climate impacts assessment. Ultimately decisions on whether and how to deploy SRM will be based primarily on the potential for SRM to reduce environmental and social impacts. Estimates of these impacts must be up to the task.

ACKNOWLEDGMENTS

Trisos is supported by U.S. National Science Foundation grant DBI-1052875. Gabriel, Robock, and Xia are supported by U.S. National Science Foundation grants GEO-1240507 and AGS-1617844.

REFERENCES

- Ahlm, L., Jones, A., Stjern, C.W., Muri, H., Kravitz, B., Kristjánsson, J.E., 2017. Marine cloud brightening-as effective without clouds. Atmos. Chem. Phys 17, 13071–13087. Available from: https://doi.org/10.5194/acp-17-13071-2017. https://doi.org/10.5194/acp-2017-484.
- Ainsworth, E.A., Yendrek, C.R., Sitch, S., Collins, W.J., Emberson, L.D., 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant. Biol. 63, 637–661.
- Allen, D.J., Nogués, S., Baker, N.R., 1998. Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J. Exp. Bot. 49, 1775–1788.

Allen Jr, L.H., Boote, K.J., Jones, J.W., Jones, P.H., Valle, R.R., Acock, B., et al., 1987. Response of vegetation to rising carbon dioxide: Photosynthesis, biomass, and seed yield of soybean. Global. Biogeochem. Cycles. 1, 1–14.

- Angel, R., 2006. Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proc. Nat. Acad. Sci. 103, 17184–17189.
- Avnery, S., Mauzerall, D.L., Liu, J.F., Horowitz, L.W., 2011. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 45, 2284–2296.
- Ballaré, C.L., Caldwell, M.M., Flint, S.D., Robinson, S.A., Bornman, J.F., 2011. Effects of solar ultraviolet radiation on terrestrial ecosystems: Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci. 10, 226–241.
- Bassman, J.H., 2004. Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochemistry Photobiology 79, 382–398.
- Bond, W.J., Midgley, G.F., 2000. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology 6, 865-869.
- Bond, W.J., Midgley, G.F., 2012. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Phil. Trans. R. Soc. B 367, 601-612.

Budyko, M.I., 1974. Climate and Life. Academic Press, New York, New York.

Carleton, T.A., Hsiang, S.M., 2016. Social and economic impacts of climate. Science 353, 1112.

- Couce, E., Irvine, P.J., Gregorie, L.J., Ridgwell, A., Hendy, E.J., 2013. Tropical coral reef habitat in a geoengineered, high-CO₂ world. Geophys. Res. Lett. 40, 1799–1805.
- Crutzen, P.J., 2006. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Clim. Change. 77, 211-220.
- Eastham, S.D., 2015. Human health impacts of high altitude emissions. Mass. Inst. Technol., Cambridge, Mass.
- Effiong, U., Neitzel, R.L., 2016. Assessing the direct occupational and public health impacts of solar radiation management with stratospheric aerosols. Environ. Health 15, 1–9.
- Emile-Geay, J., Seager, R., Cane, M.A., Cook, E.R., Haug, G.H., 2007. Volcanoes and ENSO over the past millennium. J. Climate 21, 3134-3148.
- Glienke, S., Irvine, P.J., Lawrence, M.J., 2015. The impact of geoengineering on vegetation in experiment G1 of the GeoMIP. J. Geophys. Res. Atmos. 120, 10196–10213.
- Gu, L.H., Baldocchi, D., Verma, S.B., Black, T.A., Vesala, T., Falge, E.M., et al., 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. Atmos. 107 (D6). Available from: http://dx.doi.org/10.1029/2001JD001242.
- Hardman-Mountford, N.J., Polimene, L., Hirata, T., Brewin, R.J., Aiken, J., 2013. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem. Journal of The Royal Society Interface 10, 20130701. http://dx.doi. org/10.1098/rsif.2013.0701.
- Heckendorn, P., Weisenstein, D., Fueglistaler, S., Luo, B.P., Rozanov, E., Schraner, M., et al., 2009. The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ. Res. Lett. 4, 045108.
- Held, I.M., Soden, B.J., 2006. Robust responses of the hydrological cycle to global warming. J. Climate 19, 5686–5699.
- IPCC, 2013. Summary for Policymakers. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., et al., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
- Irvine, P.J., Kravitz, B., Lawrence, M.G., Muri, H., 2016. An overview of the Earth system science of solar geoengineering. Wiley Interdisciplinary Reviews: Climate Change 7, 815–833.
- Irvine, P.J., Kravitz, B., Lawrence, M.G., Gerten, D., Caminade, C., Gosling, S.N., et al., 2017. Towards a comprehensive climate impacts assessment of solar geoengineering. Earth's Future 5, 93–106.
- Jones, A., Haywood, J.M., 2012. Sea-spray geoengineering in the HadGEM2-ES earth-system model: radiative impact and climate response. Atmospheric Chemistry and Physics 12, 10887–10898.
- Jones, A., Haywood, J., Boucher, O., 2009. Climate impacts of geoengineering marine stratocumulus clouds. Journal of Geophysical Research: Atmospheres 114, D10.

- Jones, A., Haywood, J.M., Alterskjær, K., Boucher, O., Cole, J.N., Curry, C.L., et al., 2013. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118, 9743–9752.
- Kalidindi, S., Bala, G., Modak, A., Caldeira, K., 2014. Modeling of solar radiation management: a comparison of simulations using reduced solar constant and strato-spheric sulphate aerosols. Clim. Dyn. 44, 2909–2925.
- Keith, D.W., MacMartin, D.G., 2015. A temporary, moderate and responsive scenario for solar geoengineering. Nature Climate Change 5, 201–206.
- Keith, D.W., Weisenstein, D.K., Dykema, J.A., Keutsch, F.N., 2016. Stratospheric solar geoengineering without ozone loss. Proc. Nat. Acad. Sci. 113, 14,910–14,914.
- Keller, D.P., Feng, E.Y., Oschlies, A., 2014. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat. Commun. 5, 3304.
- Khodri, M., Izumo, T., Vialard, J., Janicot, S., Cassou, C., Lengaigne, M., et al., 2017. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications 8, 778. Available from: https://doi.org/10.1038/s41467-017-00755-6.
- Kravitz, B., Robock, A., Oman, L., Stenchikov, G., Marquardt, A.B., 2009. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. J. Geophys. Res. Atmos. 114, D10107. Available from: https://doi.org/10.1029/2008JD011652.
- Kravitz, B., Caldeira, K., Boucher, O., Robock, A., Rasch, P.J., Alterskjær, K., et al., 2013. Climate model response from the geoengineering model intercomparison project (GeoMIP). J. Geophys. Res. Atmos 118, 8320–8332.
- Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J.M., Irvine, P.J., et al., 2015. The geoengineering model intercomparison project phase 6 (GeoMIP6): Simulation design and preliminary results. Geoscientific Model Development 8, 3379–3392.
- Kwiatkowski, L., Cox, P., Halloran, P.R., Mumby, P.J., Wiltshire, A.J., 2015. Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nat. Clim. Change 5, 777–781.
- Latham, J., 1990. Control of global warming? Nature 347, 339-340.
- Latham, J., Rasch, P., Chen, C.C., Kettles, L., Gadian, A., Gettelman, A., et al., 2008. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil. T. Roy. Soc. A 366, 3969–3987.
- Latham, J., Kleypas, J., Hauser, R., Parkes, B., Gadian, A., 2013. Can marine cloud brightening reduce coral bleaching? Atmos. Sci. Lett. 14, 214–219.
- Leakey, A.D.B., Ainsworth, E.A., Bernacchi, C.A., Rogers, A., Long, S.P., Ort, D.R., 2009. Elevated CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Experimental Botany 60, 2859–2876.
- Maher, N., McGregor, S., England, M.H., Gupta, A.S., 2015. Effects of volcanism on tropical variability. Geophys. Res. Lett. 42, 6024-6033.
- Mauzerall, D.L., Wang, X.P., 2001. Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States, Europe, and Asia. Annual Review of Energy and the Environment 26, 237–268.
- McCormack, C.G., Born, W., Irvine, P.J., Achterberg, E.P., Amano, T., Ardron, J., et al., 2016. Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences 13 (2–4), 103–128.
- Mercado, L.M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., et al., 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458 (7241), 1014–U1087.
- National Research Council, 2015a. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. The National Academies Press, Washington, DC. Available from: https://doi.org/10.17226/18805.
- National Research Council, 2015b. Climate Intervention: Reflecting Sunlight to Cool Earth. The National Academies Press, Washington, DC. Available from: https://doi.org/10.17226/18988.
- Niemeier, U., Timmreck, C., 2015. What is the limit of climate engineering by stratospheric injection of SO₂. Atmos. Chem. Phys. 15, 9129–9141.
- Niemeier, U., Schmidt, H., Alterskjær, K., Kristjánsson, J.E., 2013. Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. J. Geophys. Res. Atmos. 118, 11,905–11,917.
- Nowack, P.J., Abraham, N.L., Braesicke, P., Pyle, J.A., 2016. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality. Atmos. Chem. Phys. 16, 4191–4203.
- Parkes, B., Challinor, A., Nicklin, K., 2015. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening. Environ. Res. Lett. 10, 084003.
- Partanen, A.I., Kokkola, H., Romakkaniemi, S., Kerminen, V.M., Lehtinen, K.E., Bergman, T., et al., 2012. Direct and indirect effects of sea spray geoengineering and the role of injected particle size. J. Geophys. Res. Atmos. 117 (D2).
- Partanen, A.I., Keller, D.P., Korhonen, H., Matthews, H.D., 2016. Impacts of sea spray geoengineering on ocean biogeochemistry. Geophys. Res. Lett. 43, 7600–7608.
- Peters, G.P., Andrew, R.M., Boden, T., Canadell, J.G., Ciais, P., Le Quéré, C., et al., 2013. The challenge to keep global warming below 2°C. Nature Climate Change 3, 4–6.
- Pongratz, J., Lobell, D.B., Cao, L., Caldeira, K., 2012. Crop yields in a geoengineered climate. Nature Clim. Change 2, 101-105.
- Ricke, K.L., Moreno-Cruz, J.B., Caldeira, K., 2013. Strategic incentives for climate geoengineering coalitions to exclude broad participation. Environmental Research Letters 8, 014021.
- Robock, A., 2000. Volcanic eruptions and climate. Rev. Geophys. 38, 191-219.
- Robock, A., 2008. 20 reasons why geoengineering may be a bad idea. Bull. Atomic Scientists 64, 14-18.
- Robock, A., 2014. Stratospheric aerosol geoengineering. Issues Env. Sci. Tech. 38, 162–185 (special issue "Geoengineering of the Climate System").

- Robock, A., 2016. Albedo enhancement by stratospheric sulfur injection: More research needed. Earth's Future 4. Available from: https://doi.org/ 10.1002/2016EF000407.
- Robock, A., Oman, L., Stenchikov, G., 2008. Regional climate responses to geoengineering with tropical and Arctic SO₂ injections. J. Geophys. Res. 113, D16101. Available from: https://doi.org/10.1029/2008JD010050.
- Robock, A., Marquardt, A.B., Kravitz, B., Stenchikov, G., 2009. The benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 36, L19703. Available from: https://doi.org/10.1029/2009GL039209.
- Roderick, M., Farquhar, G.D., Berry, S.L., Noble, I.R., 2001. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia. 129, 21–30.
- Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., et al., 2016. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 534, 631–639.
- Salter, S., Sortino, G., Latham, J., 2008. Sea-going hardware for the cloud albedo method of reversing global warming. Philos. T. Roy. Soc. A 366, 3989–4006.
- Schreier, M., Kokhanovsky, A.A., Eyring, V., Bugiaro, L., Mannstein, H., Mayer, B., et al., 2006. Impact of ship emissions on microphysical, optical and radiative properties of marine stratus: A case study. Atmos. Chem. Phys. 6, 4925–4942.
- Searles, P.S., Flint, S.D., Caldwell, M.M., 2001. A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia. 127, 1–10.
- Shepherd, J.G.S., et al., 2009. Geoengineering the climate: Science, governance and uncertainty. The Royal Society), London RS Policy Document 10/09. Available from: https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2009/8693.pdf.
- Silva, R.A., West, J.J., Zhang, Y., Anenberg, S.C., Lamarque, J.-F., Shindell, D.T., et al., 2013. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett. 8, 034005.
- Smith, S.J., Rasch, P.J., 2013. The long-term policy context for solar radiation management. Clim. Change. 121, 487-497.
- Soden, B.J., Wetherald, R.T., Stenchikov, G.L., Robock, A., 2002. Global cooling following the eruption of Mt. Pinatubo: A test of climate feedback by water vapor. Science 296, 727–730.
- Trenberth, K.E., Dai, A., 2007. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineeringGeophys. Res. Lett 34, L15702. Available from: https://doi.org/10.1029/2007GL030524.
- Tilmes, S., Kinnison, D.E., Garcia, R.R., Salawitch, R., Canty, T., Lee-Taylor, J., et al., 2012. Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmos. Chem. Phys. 12, 10,945–10,955.
- Tilmes, S., Fasullo, J., Lamarque, J.-F., Marsh, D.R., Mills, M., Alterskjaer, K., et al., 2013. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118, 11036–11058. Available from: https://doi.org/10.1002/ jgrd.50868.
- Trisos, C.H., Amatulli, G., Gurevitch, J., Robock, A., Xia, L., and Zambri, B., 2018. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nature Ecology & Evolution 1. Available from: http://dx.doi.org/10.1038/s41559-017-0431-0.
- Wargent, J.J., Jordan, B.R., 2013. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytologist 197, 1058–1076.
- Williamson, C.E., Zepp, R.G., Lucas, R.M., Madronich, S., Austin, A.T., Ballaré, C.L., et al., 2014. Solar ultraviolet radiation in a changing climate. Nature Climate Change 4, 434–441.
- Xia, L., Robock, A., Cole, J.N.S., Ji, D., Moore, J.C., Jones, A., et al., 2014. Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 119, 8695–8711. Available from: https://doi.org/ 10.1002/2013JD020630.
- Xia, L., Robock, A., Tilmes, S., Neely III, R.R., 2016. Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmos. Chem. Phys. 16, 1479–1489. Available from: https://doi.org/10.5194/acp-16-1479-2016.
- Xia, L., Nowack, P.J., Tilmes, S., Robock, A., 2017. Impacts of stratospheric sulfate geoengineering on tropospheric ozone. Atmos. Chem. Phys. 17, 11913–11928. Available from: https://doi.org/10.5194/acp-17-11913-2017.
- Yang, H., Dobbie, S., Ramirez-Villegas, J., Feng, K., Challinor, A.J., Chen, B., et al., 2016. Potential negative consequences of geoengineering on crop production: A study of Indian groundnut. Geophys. Res. Lett. 43, 11,786–11,795. Available from: https://doi.org/10.1002/2016GL071209.