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Abstract. By analyzing in situ soil moisture data, we show that soil moisture variability
consists of two components, one of which is related to large-scale atmospheric forcing, and
the other related to small-scale land surface variability and hydrologic processes. We use
empirically estimated spatial autocorrelation functions for Illinois to estimate errors of spatial
averaging of soil moisture observations, using the method of statistically optimal averaging
of meteorological fields. The estimated dependence of the root-mean-square errors of
averaging on the soil moisture station network density can be used to analyze existing
observational networks and for designing new ones. For the application of providing
information on a regular grid for numerical models of weather and climate, we show that the
new, relatively high density networks of soil moisture observations in Oklahoma, may not
provide estimates with very much more accuracy than the relatively low density currently
operational network in Illinois. This prediction must be tested when we receive sufficiently

long time series of observations from Oklahoma.

1. Introduction

In this paper we show how long-term observations of soil
moisture in one region can be used to evaluate or improve the
networks of soil moisture stations now being created in other
regions with similar climatic conditions. The same approach
can be used for every other meteorological variable. The
traditional requirement for the density of meteorological
stations is that the random error of spatial interpolation of the
observed variable at the point farthest from the other stations
should not exceed some critical value. This approach was
first used by Drozdov and Shepelevskiy [1946], based on
linear interpolation, and later by Gandin [1963], based on the
optimal interpolation technique. The same principles, in
combination with the statistically optimal averaging method,
were applied to optimize snow course observations by
Laykhtman and Kagan [1960] and Kagan [1979]. Vinnikov
[1967, 1970] used estimates of random errors of optimal
averaging to develop scientific criteria for the density of a
global network of radiation stations.
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There are two principally different techniques for large-
scale long-term monitoring of soil moisture variations. The
future obviously belongs to remote sensing of soil moisture
from satellites. The spatial resolution of such observations
may be optimized if we use information on the statistical
structure of the soil moisture field [Vinnikov et al., 1999].

Currently, the traditional technique for soil moisture
monitoring is based on networks of surface observational
stations. The first such networks were created many decades
ago in the former Soviet Union (FSU) and later in a few
surrounding countries, including China and Mongolia
[Vinnikov and Yeserkepova, 1991; Robock et al., 1998; Entin
et al., 1999]. On average, the distance between soil moisture
stations in the FSU was about 85 km (~3000 stations in a land
area of 22,400,000 km?), but the network was much denser in
the European part of the country than in Siberia. China does
not run its soil moisture stations as a united network, so a
network density estimate would not be meaningful. We
analyzed data of 43 Chinese stations [Entin et al., 1999], but
China has many more soil moisture stations, the data of which
are still unavailable to the international scientific community.
The average distance between soil moisture stations in
Mongolia (4(5 stations in an area of 1,565,000 kmz) is about
200 km [Erdenetsetseg, 1996]. The best North American
network of soil moisture stations was created by the Illinois
State Water Survey in 1981 [Hollinger and Isard, 1994]. The
average distance between soil moisture stations in Illinois is
about 93 km. The Oklahoma Mesonet soil moisture network
that is currently being created has 60 stations; 52 more
Mesonet stations are scheduled for installation and calibration
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of soil moisture sensors [Brock et al., 1995; Basara et al.,
1998; Elliott et al., 1998]. The network with 60 stations now
and another 52 stations in the future in an area of 182,000 km?
corresponds to an average distance between stations of about
55 km now and 35 km in the future. In addition, there are a
few independent observational programs for soil moisture in
Oklahoma, including observations at the Department of
‘Energy Atmospheric Radiation Measurement program Cloud
and Radiation Testbed site. This is an example of a very
dense network of soil moisture stations.

Observations from individual stations in the network in the
FSU and Russia are usually spatially averaged for particular
catchments or administrative districts [Meshcherskaya et al.,
1982; Zhukov, 1986; Kelchevskaya, 1989]. If soil moisture
information is to be used as input into a weather prediction
model, the observed data must be averaged over the model
grids. These grids can be as small as 10 km for some
mesoscale models and as large as a few hundred kilometers
for global models.

It is obvious that the denser the network of observational
stations in a region the smaller the errors of spatial averaging
of the observed data. To estimate the root-mean-square errors
of spatial averaging of observed soil moisture, information
about the statistical structure of the soil moisture field must be
used. These errors are a potential source of errors in
meteorological, hydrological, and agricultural predictions. As
a network becomes denser, after some limit is reached, further
increase of the network density will not decrease the errors of
predictions. If this were the main use for these observations,
economical considerations would stop us from further
increasing the network density in the region. Here we
evaluate this limit for Illinois and show that further increasing
of the number of soil moisture stations in that state would not
noticeably increase the accuracy of soil moisture information
for mesoscale and global weather prediction models.

In this paper we first explain the statistical technique of
optimal averaging that we use for the analysis of soil moisture
observations. Next, we present our analysis of the separation
of scales of spatial variation of soil moisture. Then we apply
the theory to observations in the state of Illinois, and use it to
compare with a new network of soil moisture observations in
the state of Oklahoma.

2. Optimal Averaging Technique

The optimal averaging technique [Kagan, 1979] has been
shown to be efficient and convenient for regional and global
averaging of meteorological observations [Vinnikov and
Lugina, 1982; Vinnikov et al., 1991; Smith et al., 1994). It has
recently been successfully applied for regional averaging of
soil moisture observations [Robock et al., 1998; Entin et al.,
1999; Vinnikov et al., 1999].

The technique for optimal averaging over the area S of
observations at n stations may be expressed by very simple
formulae. Letf; (i=1, ..., n) be the observed soil moisture at n
stations. These stations may be inside and outside of the area.
We assume that the field of anomalies

fl=f-f )

is homogeneous and isotropic and has variance o’. The

covariance function R(d;) is

R(dy) = F7F; = 00, r(dy), @
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where r(d;;) is the normalized autocorrelation function and dj;
is the distance between stations i and j. The spatial average
F, of a variable f{x,y) over area S is

Fr=l

= [ ey dvdy ®
N

and can be approximated as a linear combination of the
observed values at n stations

F=3 S @

The optimal weights p; (i=1, ..., n) should be determined by
minimizing the variance of the random error of approximation

4)

e’ =(Fa’ —ipif.-')z =min. ®)
i1
The expressions for the weights and &2 are
ZPiRij +p,8; = fIF, ©)
e =(E) - X pTiE,. @

i=1

The covariance between local f;' and spatially averaged vari-

ables F,' and the variance of the averages, f/F’ and (Fg’)2

can be calculated preliminarily as multiple integrals of the
autocorrelation function. Here § is the variance of the ran-
dom error of observation. Kagan [1979] describes the theory
and technique of such calculations in detail. This technique
cannot be used for observations of a variable without
information on the statistical structure of that variable.

3. Statistical Structure of Soil Moisture

Meshcherskaya et al. [1982] used long-term observational
data from the FSU to study the spatial autocorrelation
functions of soil moisture for agricultural fields. Vinnikov et
al. [1996, 1999], making additional interpretation of these
estimates and original estimates of spatial autocorrelation in
the soil moisture field in Illinois, showed that the spatial
covariance function R(d) of a soil moisture field may be
expressed as

R(d) = o} exp(-d/L,) + 0,* exp(~d/L,), 8)

where d is distance, o,> and L, are the variance and scale of
the land-surface-related component of variability, and o;,z and
L, are the variance and scale of the soil moisture variability
related to atmospheric forcing. This is illustrated in a log-
linear graph in Figure 1, where the slope of the line labeled
“meteorological scale” corresponds to L, and the slope of the
line labeled “catchment hydrological scale” corresponds to L;.
According to empirical estimates for the European part of the
FSU, the scale L, depends on the time of year and depth of the
soil layer (upper 20 cm or upper 1 m) and varies in the range
of 530-880 km [Meshcherskaya et al., 1982].

Meshcherskaya et al. [1982] also showed that the
dependence of the spatial autocorrelation on direction for
distances up to a few hundred kilometers is rather weak and
may be ignored. The field of standardized anomalies of soil
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Figure 1. Schematic diagram of hydrological and meteorological
scales of soil moisture spatial variability. R is the autocorrelation
function. Actual observations follow the solid line. The scales
are determined by the slopes of the lines.

moisture may be considered to be relatively homogeneous and
isotropic with respect to its spatial autocorrelation function.
This means that the autocorrelation depends on the distance
between points but not on their relative direction.

As opposed to L,, the other scale, L, reflects the spatial
variability of topography, soil properties, and vegetation and
is much smaller, equal to about 10-20 m [Vauchaud et al.,
1985].  The land-surface-related component of spatial
variability of a soil moisture field may be interpreted as white
noise added to the atmosphere-related signal that corresponds
to a red noise statistical model. The variances of these two
components are approximately the same order of magnitude,
but their ratio 6,”/0,” may vary quite significantly depending
on the complexity of the landscape.

Vinnikov et al. [1996] showed, for three small catchments
(with areas 0.015 km®, 0.36 km?, and 0.45 km® and average
distances between stations of 40, 180, and 200 m,
respectively) at the Valdai Research Water Balance Station in
Russia, that the spatial autocorrelation coefficients between 9
and 11 points inside each of the catchments do not depend
noticeably on the distances between the points. These
observations are already at the “meteorological scale.” Only
for much smaller catchments and much smaller distances
between soil moisture observations should the “hydrological
scale” of spatial autocorrelation in soil moisture be taken into
account. Therefore for all practical purposes we may consider

that L, > L, — 0 and that o, may be interpreted as the
variance of random errors of soil moisture measurements.

For soil moisture observations in Illinois, spatial
autocorrelation functions of soil moisture estimated for the
upper 1 m and 10 cm soil layers by Vinnikov et al. [1999] are
shown in Figure 2. According to these estimates the part of
the variance related to the white noise component for both soil
layers is about 30-35%. The observed standard deviations of
soil moisture of the upper 10 cm and 1 m layers, (¢,° + 0,°)"?,
are 0.85 and 4 cm of plant available water respectively. In the
analysis that follows we will use the following parameters for
the statistical structure of the soil moisture field in Illinois.
For the top 10 cm soil layer

0, =0.7 cm, L, = 435 km, §°/0,” = 0.48. )
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For the top 1 m soil layer

o, = 3.3 cm, L, = 590 km, §°/0,” = 0.48. 10)

Analogous estimates of the parameters of spatial statistical
structure of the soil moisture field for other climatic
conditions, in Russia, China, and Mongolia, may be found in
the work of Entin [1998]. These estimates may be used for
optimal spatial averaging of soil moisture observations and
for receiving a priori estimates of errors of spatial averaging.

We do not discuss here the problem of temporal variability
of soil moisture. It also may be divided in two components,
one of which is related to the atmospheric forcing and the
other component related to short-term hydrological processes
(infiltration, surface runoff, gravitational drainage) [Entin,
1998]. Atmospheric forcing is responsible for the long-term
component of soil moisture variability with a scale of the
order of a few months. In comparison with this scale, the
other component may be interpreted as the random error of
observation. More details on this subject may be found in the
works of Delworth and Manabe [1988], Vinnikov and
Yeserkepova [1991], Robock et al. [1995], Vinnikov et al.
[1996, 19991, and Entin [1998]. This information may be
used to optimize the temporal frequency of soil moisture
observations for different users. A detailed analysis is beyond
the scope of this paper.

To monitor the meteorological component of soil moisture
variability with a timescale of a few months, Russians make
soil moisture observations 3 times per month, every 8-11
days. The shift of 1-3 days between times of observation at
each station is assumed to be negligible. The Illinois soil
moisture network has the same approach. To monitor the full
spectrum of soil moisture variability, including their
meteorological and hydrological components, the Oklahoma
Mesonet makes soil moisture measurements every 30 min.
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Figure 2. Estimates of the spatial autocorrelation functions of
soil moisture for top 10-cm and 1 m soil layers in Illinois and
monthly totals of precipitation in Illinois and Oklahoma. The
vertical bars are 95% confidence intervals. The straight lines are
approximations of the red noise components.



19,746

There is a lot of room for optimization between these two
time intervals, 10 days and 30 min.

A map of the 17 Iilinois soil moisture stations described by
Hollinger and Isard [1994] is given in Figure 3. In the figure,
a square l'\nv untl'\ cu‘lnc n"‘ lanoth 282 I'm with an aran aanal

syuaiv Lag L VS Ul iUiigul JO4& Rill, will dil daiva C{ual
to that of the State of Illinois, is also plotted. We use the
optimal averaging technique to estimate the root-mean-square
(RMS) errors of spatial averaging of soil moisture for the area

A th 1 £ atats 1aad Fenema N
of the box depending on the number of stations used, from 0

to 17. Volumetric soil moisture units (%) are used to compare
error estimates for the upper 10 cm and upper 1 m soil layers.
The results are shown in Figure 4. The first two stations in
the experiment are Bondville and Brownstown. The order of
the stations is not significant if the number of stations is more
than 4-5. Here we use a square box for simplicity only. The
optimal averaging technique may be used for any simply
connected domain. The results of numerical experiments with
different domains show that it should not be expected that
averages for the state of Illinois and for the box shown in
Figure 3 would differ significantly [Kagan, 1979].

The standard deviation of temporal variability (seasonal
variations excluded) of the upper 10 cm soil layer is equal to
8.5% by volume (0.85 cm of water). This is shown in Figure
4 as the solid circle. The standard deviation of averages for
the box area is equal to 7.2%. This value is the error of
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Figure 3. Network of soil moisture stations in Illinois. Also
drawn is a box with sides of length 382 km centered on the center
of Illinois, with the same area as Illinois.
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Figure 4. Dependence of root-mean-square errors of optimal
averaging of soil moisture on the number of stations used, for the
box shown in Figure 3. The solid circle is the standard deviation
of temporal variability (seasonal variations excluded) of the upper
10 cm soil layer, and the solid triangle is the same for the upper 1
m. Units are volume of plant-available water in a soil layer
divided by the layer volume.

information in absence of observations. The data from the
first seven stations decrease the RMS error of spatial
averaging to 2.5%. The next 10 stations further decrease the
error only a little, down to 2.2%. The same tendency may be
seen in the estimates for 1 m layer soil moisture. If we are
interested in monitoring averages for the entire state of
Illinois, we do not need more than 10 stations. The effect of
additional stations will be almost negligible.

5. Dependence of Errors of Spatial Averaging
on Box Size and Network Density

Suppose that we would like to create a regular square
network of soil moisture stations with observations to be used
as input for weather forecast models with different spatial
resolution (grid size). Using the statistical parameters
estimated for the 1 m layer soil moisture in Illinois (equation
10) allows us to estimate a priori the RMS errors of optimal
spatial averaging of hypothetical observations for different
grid sizes. The results of such calculations are shown in
Figures 5 and 6. In these calculations, the distance between
stations varies from O to 1000 km, and model grid-box size
varies from about 30 km (spatial resolution of the best
mesoscale models [Berbery et al., this issue]) to a few
hundred kilometers (spatial resolution of a typical climate
model). We assume that we use all the stations inside the grid
box and those outside of a grid box that are at a distance less
than the radius of autocorrelation from the box. This means
that the number of stations that are used for averaging
increases with increasing box size and network density.

Figure 5 shows the dependence of the RMS errors for
different box sizes on the network density, the distance
between stations. We have to distinguish two cases, when
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Figure 5. Dependence of RMS error of upper 1 m soil moisture
optimal averaging for different grid-box sizes on the
observational network density, the distance between stations.
Solid lines are estimates for the case where there is no station in
the center of the box. Dashed lines are for the case where there is
a station in the center of the box.

one of the stations is in the center of the box, and when the
four stations nearest to the center are at equal distances from
the center of the box. We can see that for a regular network
the RMS errors of grid-box averages are larger if there is no
station in the center of the box, and the distance between
stations is not very small. ‘

In general, there will not be a station at the very center of a
given domain, so we will not consider these cases. Figure 6
shows the dependence of RMS error for different distances
between stations on model grid size, when there is no station
at the box center. The dependence of standard deviations of
soil moisture averages on box size is also given in Figure 5.
This line is the limit of RMS errors of optimal averaging. We
can see that the standard deviation of soil moisture spatial
averages varies slowly, decreasing with increasing grid box
size. In general, RMS errors of spatial averaging decrease
with an increase of box size or station density. These
estimates may be used as a source of quantitative and
qualitative information for planning networks.

6. Comparison of Networks

Meshcherskaya et al. [1982] and Vinnikov et al. [1996]
showed that the large-scale red noise component of spatial
variability of soil moisture fields is related to atmospheric
forcing, the main component of which is precipitation.
Variability of the air temperature field, the other important
factor in soil moisture variability, usually has a larger scale of
spatial autocorrelation than precipitation. The scale of spatial
autocorrelation of monthly precipitation may be used as an
approximate estimate of the scale L, of spatial autocorrelation
of the soil moisture field. Estimates of spatial autocorrelation
functions of monthly precipitation for Illinois and Oklahoma
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are shown in Figure 2. These estimates are based on 1950-
1985 data from the Global Historical Climatology Network
[Vose et al., 1992]. The scales L, of spatial autocorrelation of
monthly precipitation in Illinois and Oklahoma (as indicated
by the slopes of the lines in Figure 2) are almost identical and
are equal to about 420 km. This permits us to assume that L,
in Oklahoma is the same as we estimated from observations in
Illinois. The differences in soils, vegetation, topography, and
climates may cause a large difference in o for these states,
but for a flat terrain, such as in Illinois and Oklahoma, this
difference should not be significant.  The large-scale
component 0.2 in Oklahoma may differ from that in Illinois
by a factor k which may not be equal to 1, but should be about
1. Time series of soil moisture observations in Oklahoma are
still very short and cannot be used for empirical estimates of
all these parameters.

Now let us compare three networks of soil moisture sta-
tions, the Illinois network (17 stations) with average distance
between stations of 93 km, a hypothetical Illinois network
with average distance between stations of 55 km (the density
of the current Oklahoma Mesonet soil moisture network with
60 stations), and an Illinois network with average distance
between stations of 35 km (future Oklahoma Mesonet soil
moisture network with 112 soil moisture stations). The errors
of optimal averaging for different model grid sizes and for
three defined distances between stations are taken from Figure
6 and shown in Table 1. These estimates are made for the II-
linois soil moisture statistical structure and may be used for
Oklahoma only conditionally. The estimated errors may need
to be corrected for Oklahoma by multiplying the estimates in
Table 1 and Figure 6 by an unknown coefficient k =
0,(Oklahoma)/g,(Illinois). The influence of the other un-
known parameter 1) = o,/0; is not significant if the number
of stations used for averaging is large enough. We can see in
Table 1 that even a very significant increase of network den-
sity does not noticeably decrease the RMS errors of optimal

Soil Moisture of Top 1 m Layer
Statistically optimal spatial averaging
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Table 1. RMS Errors of Optimally Averaged Upper 1 m Soil Moisture for Different Model
Grid Sizes for Soil Moisture Observational Network Densities in Illinois and Oklahoma

Model Grid-Box Size 30 km 60 km 100 km 250 km
Standard deviation of grid-box averages 32cm 32cm 3.1cm 29cm
RMS error, distance between stations is 93 km 1.1cm 1.0cm 0.9cm 0.6 cm
RMS error, distance between stations is 55 km 09cm 0.8 cm 0.7 cm 0.4cm
RMS error, distance between stations is 35 km 0.8 cm 0.7 cm 0.6 cm 0.3cm
few months. Observations at the Oklahoma Mesonet have

averaging of soil moisture. This does not mean that the Okla-
homa soil moisture network is excessively dense. However, it
should be recognized that after a very fast initial decrease of
the errors in the soil moisture, a further increasing of network
density does not provide much additional information and can

ha vary avnanciva
(8% VUl] CApLLSivU.

able resources to extend the network to cover a larger region.

It may be better to use part of the avail-

7. Conclusions

We have presented an example of how information about
the statistical structure of soil moisture in one region (Illinois)
may be used for planning soil moisture networks in another
region (Oklahoma). It may be very useful if such estimates
are made before the network is actually created. This infor-
mation may be also used for improving existing observational

nnnnnnn
networks.

about the statistical structure? For soil moisture we have only
a few regions with well-developed observational networks. It
is very significant to make information on all existing
observations available to the scientific community and to use
them to study the spatial and temporal statistical structure of
the soil moisture fields. For regions without any available
observations of soil moisture, estimates of scales of temporal
autocorrelation may be based on the theory of Delworth and
Manabe [1988]. This theory has been validated for Russian
climatic conditions by Vinnikov and Yeserkepova [1991]. In
many cases, empirical estimates of scales of spatial
autocorrelation of monthly precipitation may be used as the
first guess for the scale of spatial autocorrelation of the soil
moisture field [Meshcherskaya et al., 1982; Vinnikov et al.,
1996; Entin, 1998].

When working on the problem of land surface model
validation or calibration of satellite indices, we prefer to use
spatially averaged observations of soil moisture. Information
about the statistical structure of the soil moisture field and the
optimal averaging technique allow us to estimate the RMS
errors of spatially averaged observations of land-based
networks [Robock et al., 1998; Entin et al., 1999; Vinnikov et
al., 1999].

We should point out that taking into account this very

What hawa 1 rmati
What, however, may be the source of information

specific type of statistical structure of soil moisture fields -

might produce a contradiction between meteorological and
hydrological requirements for observations of soil moisture.
Some hydrological models may need a very high density
observational network that may be considered as excessive for
meteorological applications. Meteorologists and most
agrometeorologists have been satisfied with 10 day time
resolution of soil moisture observations in the past. This time
interval seems to be reasonable compared to the scale of
temporal autocorrelation in soil moisture fields, which is a

temporal resolution of 30 min to resolve the diurnal cycle of
soil moisture variation at different soil depths It is difficult to

expect that the diurnal cyue is a ugnm(.dm LOITIpOl’lCI'l[ of

temporal variability of upper 1 m soil layer water content, but
temporal avpraama of observations mav be used to decrease

emporal averagir observations may be used to decreas
the short-term variability and random errors in soil moisture
observations.

On the basis of the above analysis we can make the
following conclusions:

1. The spatial variability of a soil moisture field consists of
two components, one of which is related to large-scale
atmospheric forcing and the other is related to small-scale
land surface variability.

2. Estimates of RMS errors of optimal averaging for
model grids can be used for planning or improving

observational networks

osChvVauiiar ICITWOIAS.

3. The variance of soil moisture spatial averages changes
slowly, decreasing with increasing grid box size. RMS errors
of spatial averaging decrease with an increase of box size or
station density.

4. For regular networks the RMS error of grid-box
averages is largest if there is no station in the center of the
box, and the distance between stations is large.

5. The Illinois and Oklahoma soil moisture networks are
almost equally efficient at supplying information for
mesoscale models.
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