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Abstract Geoengineering via solar radiation management could affect agricultural productivity due to
changes in temperature, precipitation, and solar radiation. To study rice and maize production changes in
China, we used results from 10 climate models participating in the Geoengineering Model Intercomparison
Project (GeoMIP) G2 scenario to force the Decision Support System for Agrotechnology Transfer (DSSAT) crop
model. G2 prescribes an insolation reduction to balance a 1% a�1 increase in CO2 concentration (1pctCO2)
for 50 years. We first evaluated the DSSAT model using 30 years (1978–2007) of daily observed weather
records and agriculture practices for 25 major agriculture provinces in China and compared the results to
observations of yield. We then created three sets of climate forcing for 42 locations in China for DSSAT from
each climate model experiment: (1) 1pctCO2, (2) G2, and (3) G2 with constant CO2 concentration (409 ppm)
and compared the resulting agricultural responses. In the DSSAT simulations: (1) Without changing
management practices, the combined effect of simulated climate changes due to geoengineering and
CO2 fertilization during the last 15 years of solar reduction would change rice production in China by
�3.0 ± 4.0 megaton (Mt) (2.4 ± 4.0%) as compared with 1pctCO2 and increase Chinese maize production
by 18.1 ± 6.0 Mt (13.9 ± 5.9%). (2) The termination of geoengineering shows negligible impacts on rice
production but a 19.6 Mt (11.9%) reduction of maize production as compared to the last 15 years of
geoengineering. (3) The CO2 fertilization effect compensates for the deleterious impacts of changes in
temperature, precipitation, and solar radiation due to geoengineering on rice production, increasing rice
production by 8.6 Mt. The elevated CO2 concentration enhances maize production in G2, contributing
7.7 Mt (42.4%) to the total increase. Using the DSSAT crop model, virtually all of the climate models agree
on the sign of the responses, even though the spread across models is large. This suggests that solar radiation
management would have little impact on rice production in China but could increase maize production.

1. Introduction

Solar radiation management (SRM) has been discussed as a possible remedy for global climate warming [e.g.,
Crutzen, 2006; Wigley, 2006]. Although this strategy would likely reduce global temperatures [e.g.,
Govindasamy and Caldeira, 2000; Robock et al., 2008; Jones et al., 2010], there could be side effects that
strongly influence the climate system and society [e.g., Robock, 2008]. One possible side effect is an increased
risk to food security due to the climate changes resulting from geoengineering, especially in regions where
agriculture productivity is highly determined by the summer monsoon system [e.g., Robock et al., 2008].
A temperature gradient reduction between the continent and ocean in East Asia could reduce summer
monsoon circulation, possibly affecting East Asian agriculture [Robock et al., 2008; Tilmes et al., 2013].
However, it has been difficult to determine robust effects on agriculture in this region, as Robock et al. [2008],
Rasch et al. [2008], and Jones et al. [2010] all found different regional climate responses to geoengineering.
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Recently, the Geoengineering Model Intercomparison Project (GeoMIP) [Kravitz et al., 2011] set up four
geoengineering scenarios for climate modeling groups to better understand climate responses to SRM,
providing a good opportunity for an agriculture impact study. Here we use 10 climate modeling groups’
results from the G2 scenario, in which a 1% a�1 CO2 increase (1pctCO2) [Taylor et al., 2012] is balanced by a
reduction in insolation for 50 years, followed by no insolation reduction for another 20 years, to investigate
any effects of rapid cessation of SRM (also called “termination effects”) [e.g., Wigley, 2006; Matthews and
Caldeira, 2007; Robock et al., 2008; Jones et al., 2013].

Agricultural productivity is expected to be sensitive to climate change. Temperature, precipitation, solar
radiation, and CO2 concentration are the important climate factors affecting agriculture. There have been
many studies of how climate changes influence food production using different methods, such as field
experiments [e.g., Long et al., 2006], empirical statistical models [e.g., Lobell et al., 2011; Pongratz et al., 2012],
and dynamic crop models [e.g., Parry et al., 2004].

Pongratz et al. [2012] used a temperature-precipitation-CO2 statistical model under a geoengineered high-
CO2 world forced by simulated climate changes from two climate models and found that global rice,
maize, and wheat yields increase due to CO2 fertilization and less heat stress and also found that there are
possible regional rice yield losses in the middle latitudes of the Northern Hemisphere. Here we expand on
that study by using the results from 10 climate models and a mechanistic model of crop production,
focusing on China, the country with the largest rice production and the second largest maize production
in the world [Food and Agriculture Organization, 2012]. We examine rice and maize production in China
and address three questions here: (1) How would rice and maize production in China change under solar
geoengineering? (2) How would rice and maize production in China change when geoengineering is
abruptly ended? (3) Among temperature, precipitation, solar radiation, and CO2 concentration, which are
the dominant factors controlling regional agriculture responses?

2. Methodology
2.1. Crop Model Evaluation

We used the Decision Support System for Agrotechnology Transfer (DSSAT) model version 4.5 to simulate
crop response to climate changes [Jones et al., 2003; Hoogenboom et al., 2012]. This dynamic biophysical crop
model simulates crop growth on a per hectare basis, maintaining balances for water, carbon, and nitrogen.
It requires information about the plant environment (weather, atmospheric CO2 concentration, and soil
properties), cultivar genotype, and agricultural management practices. Different factors are important at
different phenological phases of each crop’s growth. DSSAT has been evaluated for rice in 24 provinces
(autonomous regions/municipalities) in China [Xia and Robock, 2013], and we further evaluate this model for
maize here using the same method. There are eight provinces using the same weather observations as in the
rice evaluation, and the other 17 provinces use different weather station records (Table 1). Chinese weather
data are from the China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/).

Figure 1 shows maize evaluation results in major maize production provinces. We used the same procedure as
Xia and Robock [2013]. Twenty-five locations with weather stations were selected, nearby soil profiles from the
World Soil Information Database [Batjes, 2008, 2009] were used, and agriculture practices are from Ministry of
Agriculture of the People’s Republic of China’s [2009]. The upward trend of crop yield is mainly due to agriculture
management, particularly increasing fertilizer usage. These seven provinces have the highest production in
China, accounting for more than 60% of China’s maize in 2008 [Ministry of Agriculture of the People’s Republic of
China’s, 2009]. The coefficient of determination, R2, between observations and simulations in the seven major
maize production provinces is 0.77, and in all 25 provinces R2 is 0.57. Figure 1 also shows time series of maize
yield in the seven provinces. In certain provinces in some years, such as 1985 and 1989 in Liaoning, maize
yield is lower than simulated by our model. There could be many reasons for those differences, such as
unrecorded changing maize cultivar or planting date. In general, our model is able to simulate rice and maize
yield inmajor crop yield provinces in China well in terms of upward trend, average, and standard deviation. If we
sum up the crop production for all 25 provinces, the observations increase at a rate of 2.18 Mt a�1 for rice
and 2.19 Mt a�1 for maize. Our simulations show rates of 2.12 Mt a�1 for rice and 2.42 Mt a�1 for maize, which
indicates that the long-term trend of observations and simulations are consistent.
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Although the DSSATmodel in this study is suggestive of what might happen in the future, its implementation
has limitations. First of all, crop yield data are province-averaged. As we chose one weather site to represent
the whole province, the simulated averaged crop yield might not reflect the weather changes for the entire
province. Second, the agriculture management information is insufficient. There are many agricultural

Table 1. Province Locations and Agricultural Data Used in DSSAT Simulationsa

No. Province Crop Latitude (°N) Longitude (°E) Altitude (m) Area (kha) Production (kt)

1 Anhui Rice 31.9 117.2 28 1,700 11,024
Maize 31.9 117.2 28 705 2,866

2 Beijing Rice 39.8 116.5 31 0.4 3
Maize 39.8 116.5 31 146 880

3 Fujian Rice 26.7 118.2 126 2,670 437
Maize 24.5 118.1 139 136 37

4 Gansu Rice 40.3 97.0 1,526 6 38
Maize 40.3 97.0 1,526 557 2,654

5 Guangdong Rice 24.7 113.6 61 933 4,750
Maize 22.8 115.4 17 144 635

6 Guangxi Rice 22.0 108.6 15 151 877
Maize 25.3 110.3 164 490 2,072

7 Guizhou Rice 26.6 106.7 1,224 686 4,576
Maize 27.3 105.3 1,511 735 3,912

8 Hainan Rice 20.0 110.3 64 129 650
Maize 19.1 108.6 8 17 70

9 Hebei Rice 40.4 115.5 54 82 556
Maize 39.4 118.9 11 2,841 14,422

10 Heilongjiang Rice 44.6 129.6 241 2,391 15,180
Maize 48.1 125.9 235 3,594 18,220

11 Henan Rice 36.1 114.4 76 605 4,431
Maize 36.1 114.4 76 2,820 16,150

12 Hubei Rice 30.3 109.5 457 1,228 10,892
Maize 30.3 109.5 457 470 2,264

13 Hunan Rice 26.2 111.6 173 1,255 8,831
Maize 27.5 110.0 272 241 1,280

14 Jiangsu Rice 34.3 117.2 41 2,228 17,688
Maize 34.9 119.1 3 399 2,030

15 Jiangxi Rice 27.1 114.9 71 401 2,680
Maize 28.6 115.9 47 16 66

16 Jilin Rice 45.1 124.9 136 659 5,790
Maize 43.9 125.2 236 2,923 20,830

17 Liaoning Rice 42.4 122.5 79 659 5,056
Maize 41.5 120.5 170 1,885 11,890

18 Neimenggu Rice 43.6 118.1 799 98 705
Maize 40.2 104.8 1,324 2,340 14,107

19 Ningxia Rice 38.5 106.2 1,111 80 664
Maize 38.5 106.2 1,111 209 1,499

20 Shandong Rice 37.5 117.5 12 131 1,104
Maize 37.5 117.5 12 2,874 18,874

21 Shaanxi Rice 33.1 107.0 510 125 831
Maize 37.4 122.7 48 1,157 4,836

22 Sichuan Rice 32.1 108.0 674 2,662 20,254
Maize 28.8 104.6 341 1,729 8,830

23 Tianjin Rice 39.1 117.1 13 15 105
Maize 39.1 117.1 13 160 843

24 Yunnan Rice 25.1 101.3 1,301 947 5,775
Maize 25.1 101.3 1,301 1,326 5,296

25 Zhejiang Rice 29.0 118.9 82 691 5,099
Maize 30.2 120.2 42 26 111

aNumbers refer to province locations in Figure 6. Latitudes, longitudes, and elevations are for weather stations used
to force the model for the different crops for the evaluation. Climate model output was also extracted from these
locations for the simulations. Crop area and production data are for 2008 [Ministry of Agriculture of the People’s
Republic of China’s, 2009].
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Figure 1. (a) Comparison of DSSAT simulated maize yields (evaluation and control) and observations (t/ha) for the
major maize production provinces. Evaluation simulations were forced by recorded agriculture practice, observed
monthly CO2 concentrations, and observed daily weather, while control simulations were forced by fixed agriculture
practice (150 kg/ha fertilizer, no irrigation), fixed CO2 concentration, and observed daily weather. R2 is the coefficient
of determination. Also shown are time series (1979–2007) of simulated maize yields (evaluation and control) and
observations for the top seven maize production provinces: (b) Jilin, (c) Shandong, (d) Heilongjiang, (e) Henan, (f) Heibei,
(g) Liaoning, and (h) Sichuan.
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practices DSSAT requires as input, but they were not recorded. For example, we do not know the detailed
genetic information of the cultivars during the simulated period; irrigation data are missing; fertilizer types,
the timing of applying, and usage amount are not fully recorded; and planting density, depth, and other
agricultural practice details are missing.

In addition, since the upward trend of crop yields is mainly produced by the increase of fertilizer usage, with a
small contribution from CO2 increases, we also show the comparison between the observed yields and yields
in the control run without fertilizer and CO2 forcing (Figure 1). The control run of the DSSAT model is defined
as the crop yield driven by 30 years of weather observations plus 0.5 K with irrigation turned off and CO2

concentration fixed. For rice, the R2 is 0.02, and for maize, it is 0.06. In this case, compared with our evaluation
results (R2 for rice = 0.76, and R2 for maize = 0.57), climate changes (temperature, precipitation, and solar
radiation) only contribute a very small part of the explained variance of the historical record, 2.6% for rice and
10.5% for maize. However, the large variation of the control lines shows that DSSAT is sensitive to weather
changes in terms of temperature, precipitation, and solar radiation (Figure 1). With fixed fertilizer and no
irrigation, we expect that the simulated crop yield would not be highly correlated with the historical record,
because the observed crop yields are controlled by natural weather variation and human agriculture
management. In addition, we did sensitivity tests at Hainan for rice to test how DSSAT reacts to temperature,
precipitation, and solar radiation changes in different seasons. Sensitivity tests were driven by modified daily
weather based on observations in 2007 at Hainan. Rice yield is sensitive to climate changes in spring at this
location. Increasing daily maximum temperature and daily minimum temperature by 1°C would decrease rice
yield by 5%. Decreasing daily precipitation by 20% would decrease rice yield by 5%, and this crop yield
reduction would be 40% if daily precipitation decreases by 40%. Solar radiation also affects rice yield. With a
20% reduction, rice yield would decrease 5%.

2.2. Downscaling of Climate Model Data for DSSAT

We derived climate forcing due to SRM from 10 climate models participating in G2 (Table 2). Their preindustrial
(piControl), 1pctCO2, andG2 runswere used. If therewasmore than one ensemblemember, average values were
used. We extracted monthly maximum temperature, monthly minimum temperature, monthly precipitation,
and monthly surface downwelling solar radiation for 42 locations in China; 25 locations for rice and 25 locations
for maize, with eight overlapping locations. The so-called “delta” method [Hawkins et al., 2013] is used in this
study to create climate input for the crop model (Figure 2). In this method, two sets of anomalies of monthly
averagemaximum temperature, minimum temperature, and solar radiation (between G2 and piControl runs and
between 1pctCO2 and piControl runs) were linearly interpolated to daily values and added to the observed daily
climate variables. The anomaly of monthly average precipitation was divided by the observed monthly average
precipitation, and daily precipitation was changed by that fraction on each day when precipitation occurred.

There are many other ways to downscale general circulation model output for impact study, such as the delta
method with changing variance, and bias correction without or with changing of variance. However, in this study,
we used the simplest downscaling method, the delta method without changing of variance, since it has been
shown to be a relatively robust method of temperature downscaling in terms of generating future temperature

Table 2. The 10 Climate Models Participating in GeoMIP G2

Models

Preindustrial 1pctCO2 G2

References(Ensemble Members/Years)

BNU-ESM 1/558 1/140 3/70 Ji et al. [2014]
CESM-CAM5.1-FV 1/50 1/150 1/70 Smith et al. [2010] and Oleson et al. [2010]
CanESM 1/295 1/140 3/100 Arora et al. [2011], Arora and Boer [2010], and Verseghy et al. [1993]
CCSM-CAM4 1/50 1/155 1/70 Gent et al. [2011]
GISS-E2-R 3/70 3/70 3/70 Schmidt et al. [2006], Russell et al. [1995], and Aleinov and Schmidt [2006]
HadGEM2-ES 1/576 1/140 3/80 Collins et al. [2011], Essery et al. [2003], and HadGEM2 Development Team [2011]
IPSL-CM5A-LR 1/1000 1/150 1/70 Dufresne et al. [2013], Hourdin et al. [2013], Madec [2008], and Krinner et al. [2005]
MIROC-ESM 1/530 1/140 1/70 Watanabe et al. [2008, 2011], Takata et al. [2003], and K-1 model developers [2004]
MPI-ESM-R 1/185 1/140 1/70 Giorgetta et al. [2013] and Stevens et al. [2013]
NorESM1-M 1/415 1/140 1/70 Bentsen et al. [2013]
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change to feed crop models [Hawkins et al., 2013]. We did not consider changes of variance in the simulations. In
the Curry et al. [2014] study of the GeoMIP G1 scenario (balancing 4 × CO2 by insolation reduction), which was
much more extreme than the G2 one we used, there were only small changes in temperature and precipitation
extremes, so we do not expect this to have a major impact on our results. If we had studied a scenario where the
mean climate changed, such as the GeoMIP G4 experiment (injection of 5 Tg SO2 to the stratosphere each year),
then perhaps the frequency of frost events or damaging high-temperature events would change, but when the
mean does not change as in G2, the variance does not change much. We did treat changes of maximum and
minimum temperature separately, and this accounts for any changes of the diurnal cycle.

2.3. Experimental Design

Since there are three climate model experiments—piControl, 1pctCO2, and G2—and we would like to
compare agriculture productivity between the 1pctCO2 world and the G2 world, two sets of climate
anomalies were calculated (Figure 3) (1) anomalies between piControl and 1pctCO2, and (2) anomalies
between piControl and G2.

Because we wished to use DSSAT to analyze changes in agriculture beginning in the year 2020 (the same as
the beginning of the GeoMIP G3 and G4 scenarios), we performed a scaling of our results to account for
higher CO2 concentration and temperature. According to the all the RCP scenarios, global temperature
increases from the average over the reference state for which we have observations (1978–2007) and the
year 2020 are approximately 0.5 K. Therefore, temperature values provided to DSSAT were the temperature
anomalies discussed in the previous paragraph plus 0.5 K. As simulations show small changes of precipitation
in the future climate over China (Figure 3), we did not adjust the precipitation.

In the design of GeoMIP, there are 70 years of simulations for the G2 scenario (50 years of geoengineering and
20 years of postgeoengineering). We chose 30 years for our study: the last 15 years of geoengineering
(36th through the 50th year), since that period has the strongest climate signal of geoengineering, and the
first 15 years of postgeoengineering (51st through the 65th year) to study the termination effect on
agriculture, during a period with CO2 concentration increasing from 585 ppm to 781 ppm (CO2 concentration
estimated by 1% increases per year starting from 409 ppm in 2020).

In this study, we tested 30 climate conditions (observations for 1978–2007) for each year of the 30 year
G2 and 1pctCO2 simulations. Each year of the 30 year climate anomalies of each climate model was
used to perturb each of the 30 years of observations using the delta method described above.
Therefore, for each year of the 30 year G2 and 1pctCO2 simulations, there are 30 simulations of rice and
maize growth in 25 locations in China. In addition, to test the CO2 fertilization effect, we created one
more set of runs with G2 climate conditions (maximum temperature, minimum temperature, precipitation,
and solar radiation) and a constant CO2 concentration estimated by linear extrapolation from the Mauna Loa
data (http://www.esrl.noaa.gov/gmd/ccgg/trends/) for 1993–2012 to be 409 ppm in 2020. In total, there
are 900 (years) × 25 (locations) × 2 (crops) × 3 (sets of runs) × 10 (climate models) + [for the control run]
30 (years) × 25 (locations) × 2 (crops) = 1,353,000 simulations.

Figure 2. Delta method flow chart describing the downscaling method to create climate input for DSSAT. Monthly
preindustrial control run is the average of all control run years.
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Figure 3. Three month moving average of monthly climate anomalies (temperature, surface downwelling solar radiation,
and precipitation) from GeoMIP G2 and 1pctCO2 starting from the 36th year of solar radiation management and ending at
year 65, which is the fifteenth year after the termination of geoengineering. Colored dashed lines are climate anomalies
from the 10 climate models. They are the average of all 42 locations in China. Bold black lines are the average of the 10
models’ climate anomalies. The vertical gray lines indicate the end of G2 geoengineering. Temperature anomalies are
calculated from the average of maximum temperature and minimum temperature. (a–c) Differences between G2 and
preindustrial control run and (d–f ) differences between 1pctCO2 and the preindustrial control run.
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Although in reality, agricultural practices will change depending on climate and human decisions
[Rosenzweig and Parry, 1994; Pongratz et al., 2012], in this study, to emphasize how simulated climate
changes would impact agriculture yields, we fixed cultivars and agricultural practices [Zhang et al., 2004;
Yao et al., 2007; Dai et al., 2008; Fan et al., 2010] in the control, G2, and 1pctCO2 runs: rice was planted
on 25 March, and maize was planted on 19 April (spring maize) or 30 May (summer maize) along
with 150 kg/ha fertilizer applied, and the crops were harvested at maturity in fall. During all simulations,
to emphasize the influence of precipitation changes, no irrigation was applied. In the control run, the
CO2 concentration was 409 ppm.

3. Results and Discussion
3.1. Climate Anomalies

Figure 3 shows the 3-month moving average of monthly climate anomalies of G2 and 1pctCO2 from 10
climate models averaged over 42 locations in China compared with preindustrial conditions. SRM results in
balancing global warming in all climate models, as was also shown by Jones et al. [2013]. Compared with
1pctCO2, where the average temperature anomaly (as compared to piControl) is 1.4 ± 0.3 K during years
36–50 (Figure 3d), solar reduction cools the 42 locations by 1.2 ± 0.1 K (Figures 3a and 3d) due to less
solar energy received in the atmosphere and at the surface (Figure 3b). This cooling achieves the goal of G2,
solar radiation reduction to counteract the forcing of 1pctCO2, but does not return the surface temperature
at those 42 locations to the preindustrial level completely. Except for BNU-ESM and NorESM1-M, the
other eight models bring surface temperatures down to their preindustrial values with the temperature
anomalies ranging from �0.3 ± 0.7 K (MIROC-ESM) to 0.4 ± 0.3 K (HadGEM2-ES) during the period of years
36–50. After the end of geoengineering, global mean temperature rises rapidly in the first 3 years with
an annual average increase of 0.5 K, 0.3 K, and 0.5 K, respectively, which is ~10 times higher than the normal
annual temperature increase in 1pctCO2. Five years after geoengineering cessation, the geoengineered
conditions are still 0.5 K cooler than nongeoengineered conditions at the 42 locations, which is consistent
with global average temperature changes [Jones et al., 2013]. Thirteen years after the end of
geoengineering, averaged temperature anomalies are back to the level of 1pctCO2 with a p value of 0.14.

Jones et al. [2013] found that global average precipitation change is positive in 1pctCO2 with anomalies
of ~0.05 mm/d at the end of the fiftieth year and negative to no change under G2, with a range of
changes from �0.06 to 0.00 mm/d. The average of regional precipitation changes in China of the 10
climate models is consistent with the global average, but there are large variations in different models
(Figures 3c and 3f ). At the end of the fiftieth year of 1pctCO2, nine models show positive annual
precipitation change ranging from 0.02 ± 0.39 mm/d (NorESM1-M) to 0.42 ± 0.21 mm/d (CanESM2),
except for MIROC-ESM, with a value of �0.10 ± 0.47 mm/d. In G2, compared to 1pctCO2 years 36–50,
geoengineering reduced precipitation at 42 locations, and this reduction is significant with a p value of
3.11 × 10�21 (Figure 3c). The precipitation difference for G2 between years 36–50 and years 51–65 is
0.1 mm/d. CCSM-CAM4 is the only model not showing this trend, with no significant precipitation
increase after termination of geoengineering.

3.2. Rice Production Changes

Chinese rice production is defined as follows:

Chinese rice production ¼
X25

i ¼ 1
YieldG2;1pctCO2
� �

i� Rice planting area2008ð Þi
where i is the province, and YieldG2,1pctCO2 is rice yield driven by the climate of G2 or 1pctCO2. The
average simulated rice production for the 10 models in G2 is 7.0 ± 2.6 Mt (6.7 ± 2.5%) less than that of

Table 3. Crop Production Changes (Mt) due to G2 Geoengineering

G2-Control G2-1pctCO2 G2-G2(CO2 = 409 ppm)

Crop Years 36–50 Years 51–65 Years 36–50 Years 51–65 Years 36–50 Years 51–65 G2(Years 51–65)-G2(Years 36–50)

Rice �7.0 �1.8 �3.0 0.0 8.6 10.3 5.2
Maize �17.2 �36.7 18.1 6.1 7.7 7.3 �19.6

Journal of Geophysical Research: Atmospheres 10.1002/2013JD020630

XIA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 8702



the control run for the 15 year period
at the end of SRM (Table 3). After the
end of geoengineering, simulated rice
production rises but is still 1.8 ± 6.7 Mt
less than that of the piControl run
(Figure 4a). Under the 1pctCO2
scenario, rice production varies about
the control run level during all 30 years
(Figure 4b). All the changes are within
the natural variability of rice production
(defined as 1 standard deviation of the
1978–2007 control run).

Climate anomalies from the 10 climate
models lead to different rice production
responses. Nine models show negative
changes of rice production (from�12.6 ±
8.6 Mt for MIROC-ESM to�2.1 ± 3.8 Mt for
HadGEM2-ES) during the last 15 years of
G2 geoengineering (years 36–50)
compared to piControl, while one model
(BNU-ESM) shows very slightly positive
changes (1.0 ± 5.2 Mt) in rice production
(Figure 5a). This is because the G2
simulation of BNU-ESM is only partially
successful at offsetting the temperature
increase in 1pctCO2 [Jones et al., 2013,
Figure 1]. Compared with years 36–50,
during years 51–65, all models show a
slight increase of rice production ranging
from 2.9 Mt (MPI-ESM-LR) to 7.6 Mt
(CanESM2) (Figures 4a, 5a, and 5b).
MPI-ESM-LR has a rapid drop of rice
production in the 51st year compared
with other models. A possible reason is
that in the 51st year in this model, there is
a relatively cold spring that is 1.5 K cooler
than the average spring temperature
compared to the other models, and a
relatively dry summer and fall, with
precipitation 0.4 mm/d and 0.09 mm/d
less than other models, respectively. The
cold spring would damage the panicle
initialization stage of rice and therefore
reduce its yield. Also, without irrigation, a
dry summer and fall would cause water
deficiency for rice growth.

Compared with 1pctCO2, simulated average rice production in G2 is 3.0 ± 4.0 Mt (2.4 ± 4.0%) less from year 36
to year 50 and immediately returns back to the level of 1pctCO2 after the end of geoengineering (Table 3). So,
on average, climate changes under G2, including the CO2 fertilization effect, reduce Chinese rice production
in our crop simulations. However, models act differently even in terms of the sign of the trend. Two out of 10
models have higher average rice production in the years 36–50 of G2 compared with 1pctCO2, which are
BNU-ESM and HadGEM2-ES (Figure 5a). But all the changes are not significant, since they are within the
natural variability of rice yield.

Figure 4. Chinese rice production (Mt) and percentage changes in (a) G2
and (b) 1pctCO2. Since we assume geoengineering starting in 2020 (year 1),
year 36 is actually 2055. Colored dashed lines are rice production curves
simulated with climate anomalies from the 10 climate models. The bold
black lines are the average of the 10models. The bold horizontal gray lines
are rice production of the control run. The vertical gray lines indicate the
end of G2 geoengineering. The gray area shows 1 standard deviation from
the control runs, illustrating the effect of climate variability.
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The reduction of rice production is due to rice yield decreasing in northern China (Figure 6a). Simulated
temperature reduction due to geoengineering might have a negative impact on rice yield in higher-latitude
regions in China, while in central and southern China, cooler surface increases the rice yield slightly, but all
within the natural variability of the rice yield.

3.3. Maize Production Changes

Chinese maize production is defined in the same way as rice production in section 3.2. During years 36–50
of the G2 geoengineering scenario, simulated maize production decreases by 17.2 ± 10.6 Mt as compared
to the control run (Figure 7a) but increases by 18.1 ± 6.0 Mt as compared to 1pctCO2 (Figure 7b). Those
increases in all models are statistically significant except for CCSM-CAM4. Figure 6b shows the spatial
distribution of maize yield changes. Maize is very sensitive to temperature change and prefers a cooler
environment than rice. Therefore, as a result of the crop simulations, SRM has the strongest positive impact
in northern China, and southern China shows less maize yield increase. Hainan (province 8) is the only

Figure 5. Fifteen year average crop production changes for (a, b) rice and (c, d) maize of 10 climate models and their average. Error bars are 1 standard deviation of
crop production changes in 15 years.
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Figure 6. (a) Crop yield changes under simulated G2 geoengineering scenarios (years 36–50) compared with the same
period of 1pctCO2. The yield changes are the average of 10 simulations using 10 climate model output over the 15 years
of geoengineering. Green color indicates positive change, and brown color indicates negative impact. Province colored
means that we did conduct simulations there. The numbers correspond to the names of the different provinces listed in
Table 1. (b) Red numbers indicate summer maize and black numbers are spring maize.
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region with maize yield reduction, but
this reduction is negligible with a value
of �0.2%. After the termination of
geoengineering in G2, all models
show the same decreasing trend
(Figures 5c and 5d) ranging from
11.4 Mt (7.6%) (NorESM1-M) to 29.4 Mt
(17.7%) (MPI-ESM-LR) with an average
of 19.6 Mt (11.9%). This yield reduction
is more than the maize yield natural
variability for seven models (BNU-ESM,
CESM-CAM5.1-FV, CCSM-CAM4,
HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM,
and MPI-ESM-LR). The simulated rapid
temperature increasing after the end of
geoengineering quickly shows a
negative impact on maize growth.
However, maize yield is still 6.1 Mt
higher than that of the level of 1pctCO2
even after the end of geoengineering
(Figures 7a and 7b).

3.4. CO2 Fertilization Effect

An elevated CO2 concentration would
directly increase photosynthetic carbon
gain for C3 plants such as rice [e.g.,
Allen et al., 1987] and decrease stomatal
conductance of CO2 and water vapor,
which could maintain canopy carbon
gain during dry periods for both C3 and
C4 (e.g., maize) plants [Leakey et al., 2009].
Although rising CO2 concentration does
not necessarily lead to an increase of
crop yield, especially for C4 crops such
as maize [e.g., Long et al., 2004], the CO2

fertilization effect is considered a key
climate factor to compensate for the
negative effect of global warming on
agriculture [e.g., Parry et al., 2004]. In
DSSAT v4.5, the CO2 fertilization effect is
parameterized with a fixed nonlinear
function for different crops. For
example, the CO2 fertilization effect for
maize is 1.00 when CO2 concentration is
330 ppm, and it is 1.10 when CO2

concentration is doubled [Hoogenboom
et al., 2010].

Without the CO2 fertilization effect in G2, both simulated rice and maize production decreased
(Figures 8a and 8b). With the increase of CO2 concentration by 1% a�1 in G2, the CO2 fertilization effect
increased Chinese rice production from 7.5 Mt (8.5% of G2 with constant CO2 concentration of 409 ppm)
in year 36 to 11.3 Mt (12.9%) in year 65 and Chinese maize production from 7.3 Mt (4.8%) in year
36 to 8.0 Mt (5.7%) in year 65. For rice, the CO2 fertilization effect opposes the effects due to climate
changes in G2. Simulated SRM climate changes tend to reduce rice production by 11.6 ± 6.8 Mt as

Figure 7. Chinese maize production and percentage changes in (a) G2
and (b) 1pctCO2. Since we assume geoengineering starting in 2020
(year 1), year 36 is actually 2055. Ten colored dashed lines are maize
production curves simulated with climate anomalies from the 10 climate
models. The bold horizontal gray lines are the model averages. The
vertical gray lines indicate the end of G2 geoengineering. The bold gray
lines are maize production of the control run. The gray area shows
1 standard deviation from the control runs, illustrating the effect of
climate variability.
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compared to 1pctCO2, while the CO2

fertilization effect raises rice
production by 8.6 Mt. Therefore, the
reduction of rice production in G2 due
to temperature and precipitation
change is countered by rising CO2

concentration. This result is consistent
with Pongratz et al. [2012], who found
that rice production would slightly
decrease under a 2 × CO2

geoengineered world compared to
2 × CO2 nongeoengineered scenario
due to the combination effect of
climate changes and the CO2

fertilization effect in middle latitudes
of Northern Hemisphere. For maize,
the CO2 fertilization effect and
simulated G2 geoengineering climate
changes both increase production,
with CO2 contributing 42.2% of the
maize production increase during the
last 15 years of G2 geoengineering.
This finding is consistent with
Pongratz et al. [2012], which showed
~50% CO2 fertilization effect
contributing to maize yield increase.
Since Pongratz et al. [2012] used the
CO2 fertilization factors from the
DSSAT model, this is not surprising,
and other treatments of this relatively
poorly constrained effect would likely
give different results, such as shown
in Figure 3 of Jones et al. [2013].

3.5. Dependence of Results
on Climate Factors

To determine which variables were the
most important in influencing the
results, we conducted a linear

regression analysis for rice and maize at each location under the G2 and 1pctCO2 scenarios. The
regression uses 900 years of seasonal climate factors as variables and crop yield as predictor. The 13
climate variables are three seasons (spring, summer, and fall) of maximum temperature, minimum
temperature, precipitation, and solar radiation, and annual CO2 concentration. In total, there are
25 (locations) × 10 (models) equations for each crop under each scenario (G2 and 1pctCO2). Then we
counted total number of p values less than 0.05 for each variable to indicate its significance.

Summer and fall precipitation are the most significant for crop yield (Figure 9). In particular, fall precipitation
is considered significant in 55% of the predictions of crop yield. Because we turned off the irrigation function in
our simulations, precipitation is the only water source for crops; either drought or flood would cause failure
of crop growth. For example, the precipitation deficiency in year 49 simulated by HadGEM2-ES caused a drop in
production in both rice and maize. For maize, summer maximum temperature is also important in more than
half of the cases. G2 geoengineering produced a cooler surface, therefore alleviating heat stress and
significantly increasing maize production. The differences of factor significance between G2 and 1pctCO2
scenarios for both rice and maize are not significant.

Figure 8. CO2 fertilization effect on (a) rice and (b) maize. Since we
assume geoengineering starting in 2020 (year 1), year 36 is actually
2055. All lines are the average of crop production simulated by 10
climate models. The error bars on each line are 1 standard deviation
of the 10 climate models including 30 climate conditions for each
year. The horizontal gray lines are crop production of the control
runs, and the gray areas are crop natural variability. The vertical gray
lines indicate the end of G2 geoengineering. The CO2 fertilization
effect can be estimated from the difference between the blue and
the black lines.
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3.6. Uncertainties

There are several uncertainties in this study.
Different SRM techniques could bring
different climate responses [Niemeier et al.,
2013], which will impact agriculture in a
totally different way. In this study, we just
focus on one of the experiments designed in
GeoMIP (G2), and since 10 climate modeling
groups did the same experiment, we have a
relatively robust climate response in terms of
this specific SRM scenario.

The downscaling method could make a big
difference in an agriculture impact study.
The delta method with or without variability
correction and bias correction with or
without variability are all simple and
commonly used downscaling methods.

Although the delta method without variability correction is likely a good way to create temperature input
[Hawkins et al., 2013], several difficulties arise when using this method to create precipitation forcing.
Different patterns of precipitation (event intensity and event duration) with the same average monthly
precipitation value could significantly alter the results, especially because in our analysis we found that spring
and summer precipitation are the most important factors controlling rice and maize production. A change of
precipitation pattern from using a different downscaling technique might change our results.

Insufficient agriculture practice data, such as planting dates in different provinces and details of different
cultivars used in regions, would affect model evaluation and the details of our results. In addition, crop yield
reports might not be accurate due to human error.

Other important climate factors affecting rice and maize production have not been considered in this
study, such as changes in ultraviolet radiation and diffuse solar radiation. These are important factors to
consider in future studies using stratospheric sulfate injection geoengineering scenarios. In addition, the
CO2 fertilization effect is parameterized in DSSAT, and this fixed value determines how CO2 concentration
contributes to crop yield. More recent understanding of the CO2 fertilization effect on different crops
[e.g., Lam et al., 2013; Nam et al., 2013] might improve crop simulation.

Different cropmodels produce a range of crop yield predictions under the same climate forcing and the same
agricultural management [Palosuo et al., 2011; Rötter et al., 2011]. An intercomparison of the response of
several different crop models to geoengineering would be valuable in the future.

4. Conclusions

Using the climate changes due to SRM as simulated by 10 climate models (GeoMIP G2), Chinese-simulated
rice production falls by 3.0 ± 4.0 Mt (2.4 ± 4.0%) during the last 15 years of geoengineering (years 36–50) as
compared with rice production in the 1pctCO2 run, due to the combined effects of the simulated climate
changes and the CO2 fertilization. Without the benefit of rising CO2, our simulations show that Chinese rice
production drops 11.6 ± 6.8 Mt (11.6 ± 6.8%) as compared to 1pctCO2. The termination effect from SRM raises
Chinese rice production by 5.2 Mt in the first 15 years of a postgeoengineering period (years 51–65)
compared with rice production during the last 15 years of geoengineering (years 36–50), back to the level of
1pctCO2. In particular, if CO2 concentrations continue to increase in the simulation, the CO2 fertilization effect
would compensate for the negative effect from geoengineering climate changes in simulations. However, all
of these changes are within the natural variability of rice production in China. Therefore, based on the rice
simulations, G2 geoengineering has no significant effect on Chinese rice production.

In our model, maize production in China benefits from SRM (GeoMIP G2) with an increased production of
18.1 ± 6.0 Mt (13.9 ± 5.9%) compared with that in a 1pctCO2 scenario during the years 36–50, with the
combination of effects of climate and the CO2 fertilization effect. Climate changes in G2, in particular the

Figure 9. Percentage of p values< 0.05 of 13 climate factors consid-
ered in linear regression. There are 10 (models) × 25 (locations)
equations for each crop under each scenario. The regression uses
900 years of seasonal climate factors and crop yields.
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relief of heat stress, contribute to 58% of this maize production increase, and high CO2 concentration
contributes to the remaining 42%, raising maize production by around 7.7 Mt. When geoengineering ceases,
the consequent rapid temperature rise causes simulated maize production to decrease to the level of that in
1pctCO2 within 1 year, implying serious consequences for local and national food security.

Nonirrigated agriculture depends strongly on precipitation amounts. Summer and spring precipitations are
significant for rice and maize production based on a linear regression analysis in our study. At some locations
in several climate models, G2 geoengineering reduced the mean precipitation but with a larger variability.
Therefore, local climate variations with interchanging droughts and floods would damage crop yields and
also make precipitation in the growing season an important factor controlling agriculture production.
Temperature is another essential factor controlling crop production. Heat stress due to the climate response
to the greenhouse gas forcing would be harmful for most of the crops although the CO2 fertilization effect
could partially compensate for this negative impact, especially for C3 plants such as rice. The aim of
geoengineering would be to cool Earth to help address the problem of global warming. As such, the cooling
effect of geoengineering would benefit the current agricultural yield, particularly for maize, although there
are other climate changes from SRM geoengineering simulations, such as an increase in incident ultraviolet
light, that might harm agriculture. In addition, all analyses are based on current agriculture practices and
cultivars; with the development of heat resistant crops, they might be less sensitive to the
temperature changes.

Although this study benefits from GeoMIP with 10 climate models’ simulations of the same geoengineering
experiment, we only used one geoengineering scenario, one simple downscaling method, one crop model,
two crops, and one region. Clearly, further investigation is needed, including on global agricultural response
and on the world trade system, to understand how food security would be impacted by geoengineering.
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