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Abstract

Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spa-

tiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease.

Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assess-

ing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here, we describe the spatiotem-

poral patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different

climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during

the past decade (2001–2010) across the contiguous United States have been observed to start 3.0 [95% Confidence

Interval (CI), 1.1–4.9] days earlier on average than in the 1990s (1994–2000). The average peak value and annual total

of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9–62.9%) and 46.0% (95% CI, 21.5–70.5%),

respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with

changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate

change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States.
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Introduction

Climate change has been shown to cause dramatic

changes in natural ecosystems and cultivated agricul-

tural systems, and to increase the occurrence of disease

in both (Boxall et al., 2009; Altizer et al., 2013). Climate

trends and variations impact many prevalent human

diseases such as malaria, asthma, and hay fever. These

climate-linked diseases have raised increasing concerns

related to public health (Epstein, 2005; McMichael et al.,

2005; Patz et al., 2005). In particular, climate change is

expected to modify the patterns of emission and trans-

port of allergenic pollen from trees, weeds, and grasses

(Wan et al., 2002; Frei & Gassner, 2008; Kinney, 2008;

Garc�ıa-Mozo et al., 2010). Like dust mites and cock-

roaches in indoor environments (Reid & Gamble, 2009),

outdoor allergenic pollen is one of the main triggers of

allergic airway disease, affecting up to 30% of the popu-

lation of industrialized countries (Sofiev & Bergmann,

2013). It acts synergistically with common air pollu-

tants, such as ozone and particulate matter, to exacer-

bate allergic airway disease (Cakmak et al., 2012),

resulting in related high medical costs (Lamb et al.,

2006).

Understanding the spatiotemporal patterns of

changes in pollen season timing and levels is thus

important in assessing climate impacts on allergic air-

way disease (Beggs, 2004; Bielory et al., 2012; Dapul-

Hidalgo & Bielory, 2012). Most studies on assessment

of climate change effects on allergenic pollen season

have involved individual or a few taxa at a single or

limited number of locations (Wan et al., 2002; Frei &

Gassner, 2008; Garc�ıa-Mozo et al., 2010). Analyses of

multiple taxa at stations spanning different climate

regions are needed to elucidate climate impacts on

allergenic pollen and potential consequences on public

health. Changes in temperature and precipitation have

been and will be heterogeneous, and enhanced warm-

ing and precipitation are very likely to occur at higher

latitudes (IPCC et al., 2013). Furthermore, even in the

vicinity of a single locality, different taxa are observed

to respond differently to climate change (Fitter & Fitter,

2002). The recent US National Climate Assessment

looks at all the work done today on how allergenic pol-

len season has changed with climate, and shows studies
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of some regions for some taxa (Melillo et al., 2014), but

here for the first time we present a comprehensive

national study to investigate the allergenic pollen sea-

son variations in the past two decades under a chang-

ing climate.

In this study, allergenic pollen season variations of

birch (Betula), oak (Quercus), ragweed (Ambrosia), mug-

wort (Artemisia), and grass (Poaceae) were investigated

using the observed data of daily counted airborne pol-

len and meteorology factors during the period of 1994–
2010 across the contiguous US (CONUS). We sought to

examine the spatiotemporal patterns of change in aller-

genic pollen season timing and levels for multiple taxa

in multiple climate regions, and their relationships with

recent climate change at a continental scale.

Materials and methods

Data source

Daily counts of airborne pollen were retrieved from all avail-

able stations of the National Allergy Bureau (NAB) of the

American Academy of Allergy, Asthma and Immunology

(AAAAI) across the CONUS during the period of 1994–2010.

The daily counts of airborne pollen are expressed as average

atmospheric concentrations with the unit of pollen grains per

cubic meter. Fifty of 82 stations were selected by examining

the retrieved airborne pollen counts based on data availability

in the nine climate regions of the CONUS (Fig. 1, Table S1 and

S2). For each of the pollen stations, the sampling frequency

and period in each pollen season are approximately the same.

The sampling frequency is 5 days per week for most of NAB

pollen stations. Observed daily temperature and precipitation

were obtained from the National Climatic Data Center

(NCDC) meteorological stations nearest to the corresponding

NAB pollen stations. Figure S1 shows the schematic diagram

summarizing the materials and methods in this study.

Pollen indices

Start Date, Season Length, Peak Value and Annual Total Pro-

duction of daily counted airborne pollen were selected as four

pollen indices to assess climate change impacts on allergenic

pollen season timing and levels (Figure S2). With day 1 being

January 1st, the start date (days from January 1st) is the day

when the cumulative pollen count reaches 5% and end date

when it reaches 95% of annual total count. This method was

used to exclude long range transport pollen grains from the

local pollen season. These long range transport pollen grains

from surrounding regions may influence pollen counts at the

beginning and end of local pollen seasons (D’Amato et al.,

2007; Smith et al., 2008). Season length (day) is defined as the

duration between start and end dates. Peak value (pollen

grains m�3) is the maximum daily count recorded during a

pollen season. Annual production (pollen grains m�3) is

defined as the sum of daily counts during a pollen season.

Additional description of the derived pollen indices is pre-

sented in the Supporting Information.

Climatic factors

Allergenic pollen season timing and levels have been widely

reported to be associated with Growing Degree Days (GDD),
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Frost Free Days (FFD) and accumulated precipitation (Garc�ıa-

Mozo et al., 2008; Ziska et al., 2011; Zhang et al., 2013). The

fixed-period GDD value was calculated for each taxon in each

year at each NAB station. FFD is defined as the interval

between the last frost day during spring and the first frost day

(daily minimum temperature below 0 °C) during fall. Frost

free days has been associated with pollen season length, espe-

cially for weed taxa (Ziska et al., 2011). Pollen levels were

affected by precipitation preceding and during the pollen sea-

sons (Makra et al., 2012; Zhang et al., 2013). Accumulated pre-

cipitation in fixed periods was used in the current study to

investigate the climate change impacts on allergenic pollen

levels. These fixed periods were selected to approximately

cover the allergenic pollen seasons and the time right before

the seasons at the studied NAB stations (Table S3).

Mean pollen indices

To reduce the effects of the natural climate and plant-growth

variability on pollen indices (Masaka & Maguchi, 2001; Deser

et al., 2012), mean pollen indices were calculated for the past

decade (2001–2010) and the 1990s (1994–2000) at each station.

Pollen data before 1994 were scarce and usually reported on

a weekly basis, and thus not adequate for deriving start date

and duration of pollen season. Because of proprietary issues,

airborne pollen data in 2001 and 2002 are not available to us

for most of the studied stations. This makes 7 years of air-

borne pollen data available for period 1994–2000 and

approximately 8 years of data available for period 2001–

2010. For calculating the changes in mean pollen indices

between the past decade and the 1990s, at least 3 years of

pollen data in each of the two periods are required. Stu-

dent’s t-tests were performed to check the significance of

changes in pollen indices during periods of 1994–2000 and

2001–2010 for each of the five pollen taxa. Since hypotheses

tests on four pollen indices based on the same group of

observed pollen data may potentially cause spurious signifi-

cant findings, the Benjamini Hochberg procedure were used

to guarantee a false discovery rate of less than 5% (Benjamini

& Hochberg, 1995).

Trend and correlation analysis

Regression analysis was performed to identify trends of start

date, season length, peak value, and annual production of

allergenic pollen during 1994–2010 at each of the NAB sta-

tions. At least 6 years of pollen data are required for conduct-

ing trend analyses of pollen indices at a NAB pollen

monitoring station. Correlation analyses were conducted to

examine the relationships between changes in mean pollen

indices and changes in mean climatic factors.

The Supporting Information explains, in detail, the equa-

tions and parameters for calculating GDD, FFD, accumulated

precipitation and mean pollen indices. It also contains infor-

mation regarding calculations of the changes in mean pollen

indices and climatic factors between the periods of 2001–2010

and 1994–2000 at each station, and their corresponding regio-

nal and nationwide averages.

Results

Trends of pollen indices

Figure 2 summarizes the results of trend analyses of

start date, season length, peak value, and annual pro-

duction of allergenic pollen season during 1994–2010
for each taxon at each NAB station. For example, for

start date of birch pollen, trend analyses on start date

were performed at each station based on available pol-

len data from 1994 to 2010. The number of stations

where decreasing trends (i.e., negative slope) of birch

pollen start date have been observed, was plotted as

the first bar in the left side of Fig. 2a; the section of solid

bar gives the number of stations where significant

decreasing trends have been observed (P < 0.05, Stu-

dent’s t-test). Likewise, the first bar in the right side of

Fig. 2a indicates the number of stations where increas-

ing trends of birch pollen start date have been

observed.

Decreasing trends during 1994–2010 indicate that the

pollen season tends to start earlier, season length tends

to be shorter, and peak value and annual production

tend to decrease. The allergenic pollen season during

the period of 1994–2010 across the CONUS showed

early start trends at 59%, 61%, 79%, 83%, and 56% of

the 50 studied stations for birch, oak, ragweed, mug-

wort, and grass, respectively. Around 7% of the studied

stations showed trends of significantly earlier start

dates (P < 0.05, Student’s t-test). Season lengths tended

to be shorter at 62% and 68% of the studied stations for

birch and oak, respectively, but appeared to be longer

at 65%, 92%, and 54% of the studied stations for rag-

weed, mugwort, and grass, respectively. The number of

stations with significantly different start dates and sea-

son lengths in general are proportional to the number

of stations with increasing or decreasing trends of start

date and season length.

The peak value and annual production of daily

counted airborne pollen tended to increase for spring-

flowering taxa at most of the studied stations: around

62% of the observations showing increasing trends in

peak value and annual production during the period of

1994–2010 (one observation corresponds to airborne

pollen count for one taxon at one station during 1994–
2010). For the peak value and annual production of

the summer-flowering taxa, decreasing trend, and sig-

nificant decreasing trend are more common than

increasing.

Changes of mean pollen indices

Figure 3 displays the changes of mean pollen indices

between the periods of 1994–2000 and 2001–2010 in

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12755
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nine climate regions across the CONUS. The relative

change in peak value was calculated by dividing the

changes in mean peak value from two periods by the

mean peak value in the period of 1994–2000, i.e.,

DPV=PV1 ¼ ðPV2 � PV1Þ=PV1 (likewise for annual pro-

duction). The box plot was generated using changes in

mean pollen indices at different stations within the

same climate region.

Changes in pollen indices vary by climate region and

taxon. The allergenic pollen season in most of the cli-

mate regions tended to start earlier in the past decade

than the 1990s, but it tended to start later in the South

and Southeast climate regions. In general, the allergenic

pollen season for the north-eastern CONUS (e.g.,

Northeast and East North Central climate regions) in

the past decade appeared to last longer than in the

1990s; while for the southern CONUS (e.g., South and

Southeast climate regions) it appeared to be shorter

(Fig. 3, Table S4). Allergenic pollen levels across the

CONUS were observed to increase substantially across

different geographic areas in the past decade compared

to the 1990s.

Overall, the allergenic pollen seasons for five repre-

sentative taxa started on average 3.0 (95% CI, 1.1–4.9)
days earlier during the past decade than during the

1990s across the CONUS (Table 1, Figure S3). Signifi-

cantly earlier start dates (P < 0.05, Student’s t-test with

Benjamini Hochberg control procedure) are shown for

6.3% of the observations, with an average advancement

of 17.0 (95% CI, 8.3–25.7) days in a decade; and 2.1% of

the observations showed significantly later start dates

than previously. Pollen seasons for spring-flowering

allergenic taxa (birch, oak, and grass) in the past decade

appeared to be on average 3.1–4.8 days shorter than in

the 1990s; and pollen seasons of summer-flowering taxa

(ragweed and mugwort) appeared to be 1.3–10 days

longer than previously.

The average allergenic airborne pollen levels have

increased by 42.4% (95% CI, 21.9–62.9%) and 46.0%

(95% CI, 21.5–70.5%) based on peak values and annual

production, respectively (Table 1, Figure S3). For aller-

genic airborne pollen levels, 16.8% of the observations

showed significant increase in annual production with

an average increase of 179.9% (95% CI, 96.6–263.2%);

and 6.3% of the observations showed significant

increase in peak value with an average increase of

283.6% (95% CI, 231.9–335.4%).

Spatiotemporal patterns of changes of mean pollen indices

Changes in average allergenic pollen season timing and

airborne levels between the past decade and the 1990s

were identified as functions of latitude (Fig. 4).

Changes in mean start date were found to decrease
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from later start to earlier start with increasing latitude;

changes in mean season length increased from shorter

season to longer season with increasing latitude. The

latitudinal effects on average allergenic airborne pollen

levels varied for different taxa. Overall, changes in

average annual production appear to be large at higher

Table 1 Differences in mean pollen indices‡ between periods of 2001–2010 and 1994–2000 in the contiguous US. 95% confidence

intervals are included in the parentheses

Start date (Days) Season length (Days) Peak Value†(%) Annual production† (%) # of stations

Birch �2.3 (�7.0, 1.9) �4.4* (�8.8, �0.6) +44.9* (7.9, 82.0) +42.8* (4.6, 81.1) 19

Oak �4.4*(�7.4, �1.5) �3.1 (�7.0, 0.8) +86.4* (37.9, 134.8) +92.5* (29.4, 155.7) 28

Ragweed �4.0 (�7.6, �0.4) +1.3 (�1.1, 3.6) +12.4 (�22.9, 47.7) �3.1 (�30.0, 23.8) 20

Mugwort �12.5 (�145.9, 120.9) +10 (�66.2, 86.2) �45.4 (�127.4, 36.5) �51.5 (�179.0, 76.1) 2

Grass �0.2 (�4.7, 4.3) �4.8 (�13.7, 4.2) +23.0 (�15.0, 61.0) +43.4 (�3.4, 90.3) 26

Average �3.0*(�4.9, �1.1) �2.6 (�5.4, 0.2) +42.4*(21.9, 62.9) +46.0* (21.5, 70.5) 31

Asterisk (*) indicates statistically significant difference at 5% level based on Student’s t-test and Benjamini–Hochber control proce-

dure (false discovery rate <5%).

†The relative change in peak value was calculated by dividing the changes in mean peak value from two periods by the mean peak

value in the period of 1994–2000 (i.e., DPV=PV1 ¼ ðPV2 � PV1Þ=ðPV1Þ, and likewise for annual production.

‡The changes in a mean pollen index for a given taxa during two periods at all available stations were used to calculate the nation-

wide average and the 95% confidence intervals..

–20 0 20

S

SE

SW

C

W

NE

ENC

WNC

NW

Changes in start date (Day)

(a)
C

lim
at

e 
re

gi
on

−60 −40 −20 0 20

Changes in season length (Day)

(b)
Birch

Oak

Ragweed

Mugwort

Grass

−60 0 100 200 300

Changes in peak value (%)

(d)

−60 0 200 400 600

Changes in annual production (%)

(c)

Fig. 3 Changes in mean pollen indices during period of 2001–2010 from the means during 1994–2000 across the contiguous US. The

nine climate regions: South (S), Southeast (SE), Southwest (SW), Central (C), West (W), Northeast (NE), East North Central (ENC), West

North Central (WNC), and Northwest (NW). (a) Start Date, (b) Season Length, (c) Annual Production, and (d) Peak Value. In each box

plot the central black line is the median; the black diamond is the mean; two sides are the 25th (q1) and 75th (q3) percentiles; the whis-

kers represent q3 + 1.5(q3�q1) and q1-1.5(q3�q1), respectively. ‘Outliers’ were plotted as plus (‘+’). A negative number indicates earlier

pollen season start date, shorter season length, and decreasing pollen levels.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12755

ALLERGENIC POLLEN AND CLIMATE CHANGE IN US 5



latitudes and small at lower latitudes; while changes in

average peak value appear to be small at higher lati-

tudes and large at lower latitudes.

Allergenic pollen seasons for spring-flowering birch

and oak start from the south and shift gradually

toward the north, and their season lengths at lower lat-

itudes are generally longer than those at higher lati-

tudes. The enhanced warming at higher latitudes

(IPCC et al., 2013) leads to larger increases in GDD and

FFD than at lower latitudes, and thus drives the aller-

genic plants at higher latitudes to flower earlier and

last for a longer duration. This makes the start dates

from north to south more synchronous and the season

length more uniform during the past decade than

previously.

Relationship with recent climate variation

Figure 5 presents the relationships between changes of

mean pollen indices and changes of mean climatic fac-

tors during the periods of 2001–2010 and 1994–2000
across CONUS. The trend lines for changes in peak

value (Fig. 5c) and annual production (Fig. 5d) are

divided into two stages at DPrc = 100 mm. This precip-

itation change of 100 mm was roughly the ‘valley

point’ of the curves describing the relationships

between change in airborne pollen level and change in

precipitation.

The changes in mean start date are negatively related

to changes in GDD between the past decade and the

1990s while the changes in season lengths are positively

related to changes in FFD (Fig. 5a and b). Accumulated

precipitation during pollen season exerts dual effects

on airborne pollen levels (Fig. 5c and d). When the

change in precipitation is less than 100 mm, increase in

precipitation tends to reduce the airborne pollen levels.

Conversely, when the change in precipitation is greater

than 100 mm, increase in precipitation tends to increase

the airborne pollen levels.

Discussion

Comparisons with previous studies

The widely increasing trends of peak value and annual

production of spring-flowering taxa are consistent with

a European study focused on the trends of observed

annual airborne pollen counts from multiple taxa

across Europe (Ziello et al., 2012b) (Fig. 2c and d). The

study reported that 59% of the observed trends of

annual airborne pollen counts increased during various

periods from 1977 to 2009 at different European pollen

monitoring stations. The later onset and shorter dura-

tion of the allergenic pollen season in South and South-

east regions are consistent with the decreasing trends

of temperature in these regions (IPCC et al., 2013)

(Fig. 3, Tables S4).

The average advancement of allergenic pollen season

onset in the past decade is consistent with the reported

decadal advancements of phenology events (e.g., flow-

ering) of trees, weeds, and grasses (Parmesan & Yohe,

2003; Root et al., 2003; Ziello et al., 2012a; Bock et al.,

2014) (Table 1, Fig. S3). Similar latitudinal effects on

altered ragweed pollen season length in North America

have been reported by Ziska et al. (Ziska et al., 2011)

(Fig. 4). Similar synchrony of onset of birch pollen sea-

son in different regions has been observed in Finland

during 1989–2006 (Ranta et al., 2008) (Fig. 4).
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Impacts of temperature and precipitation

Over the past two decades, temperature and precipita-

tion changes over North America have been larger at

higher latitudes and altitudes (IPCC et al., 2013). This

enhanced warming and precipitation at higher latitudes

and altitudes has caused poleward and upward shifts

of distribution ranges of plants and animals across dif-

ferent ecosystems (Inouye et al., 2000; Walther et al.,

2002). The spatiotemporal patterns of changes in aller-

genic pollen season timing and airborne levels are

likely due to the latitudinal patterns of temperature

and precipitation in the Northern Hemisphere. The lar-

ger increase in temperature and precipitation at higher

latitudes (IPCC et al., 2013) caused larger changes in

start date and annual production of allergenic pollen at

higher latitudes (Fig. 4a and d). Change in peak value

and season length may be dominated by changes in

precipitation. Larger increase in precipitation and its

frequency at higher latitudes washes out more airborne

pollen during the pollen season, and thus reduces the

peak value of airborne pollen at higher latitudes

(Fig. 4c). The reduced season length of allergenic pollen

at lower latitude is most likely caused by the decreasing

temperatures in the South and Southeast regions in the

CONUS (IPCC et al., 2013), and those at middle lati-

tudes are likely due to the increased precipitation and

rainy days.

On one hand, increasing precipitation can directly

wash out more airborne pollen, and therefore decrease

the peak values and annual total counts of airborne pol-

len. On the other hand, climate change, even on the

scale of years to decades, can change the distributions

and abundances of plants and animals (Pastor & Post,

1988; Overpeck et al., 1990; Blois et al., 2013); a large

increase in precipitation may favor the growth and

expansion of habitat of allergenic plants at higher lati-

tudes, at locations that have not been favorable for

plant growth because of dry and cold conditions, thus

increasing the production of airborne pollen.

The dual effect of precipitation on airborne allergenic

pollen levels is particularly prominent at higher lati-

tudes. If similar trends of enhanced warming and pre-

cipitation at higher latitudes continue, earlier exposure

times and higher exposure levels to allergenic pollens

may occur with potentially substantial consequences to

public health. This will likely increase the prevalence

(number of individuals becoming allergic) and the mor-

bidity (severity and duration) of the population suffer-

ing from allergies and asthma.

Uncertainties in this study

The variable number of NAB stations in nine climate

regions could potentially cause bias, when we compare

the allergenic pollen season variations among different
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represent the trends; shaded gray areas are the 95% CIs. The initial and last dates and base temperature used to calculate GDD, FFD

and accumulated precipitation are listed in Table S3. In panels (c) and (d), the trend line is divided into two stages at DPrc = 100 mm to

show the dual effects of precipitation on airborne pollen levels.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12755

ALLERGENIC POLLEN AND CLIMATE CHANGE IN US 7



climate regions (Fig. 3). Specifically, since there are

only two or three NAB stations in each of the North-

west, West North Central and Southwest regions there

is a scarcity of data for these regions. To reduce this

bias, Fig. 4 was generated to account for allergenic pol-

len season variations across latitudes without confining

the data in climate regions. Fig. 3 and Fig. 4 should be

considered together for comparison of allergenic pollen

season variations among different regions and loca-

tions. Furthermore, incorporation of the airborne pollen

data during the missing years and more recent years

(e.g., 2011–2013) into the analyses could improve the

results of this study.

The causal attribution of changes in allergenic pollen

season timing and levels to variation and trend of a sin-

gle climatic factor in Fig. 5 is substantially com-

pounded by multiple other factors and their

combinations (Walther et al., 2002; Makra et al., 2012;

Zhang et al., 2013). The distances between NAB pollen

stations and corresponding closest NOAA meteorology

stations vary from a few kilometers to tens of kilome-

ters depending on the stations. The mismatch of loca-

tions between pollen and meteorology stations may

play a role in the weak relationships found in Fig. 5.

Factors affecting pollen season timing and airborne

levels interact in complex ways, and it may not be sur-

prising to find a weak correlation with temperature or

precipitation changes (Walther et al., 2002; Ziello et al.,

2012b). Population shifts and changes of land use in the

proximity of the NAB counting stations may play an

important role in determining the amount of airborne

pollen collected at the corresponding stations (Reid &

Gamble, 2009; Ziska & Beggs, 2012; Haberle et al.,

2014). Because of the fertilizer effect of CO2 in the atmo-

sphere, increase in CO2 level itself or combined with

rising temperature has been reported to substantially

influence pollen and spore production (Ziska et al.,

2003, 2007, 2009; English et al., 2009; Rogers et al., 2010).

Data describing these compounding factors (e.g., CO2

level and land changes) are generally not available or

very limited during the period of 1994–2010 for most of

the NAB pollen stations. Further study to quantify the

influence of these compounding factors and their com-

binations is needed to improve our understanding of

climate impact on spatiotemporal distributions of aero-

allergens. Extrapolation of these results into the future

based on projections of future climate, assessing the

impacts of climate change on future allergic airway dis-

ease, is also an obvious next step.
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