
Temporal and spatial scales of observed soil moisture variations
in the extratropics

Jared K. Entin
Department of Meteorology, University of Maryland, College Park

Alan Robock
Department of Environmental Sciences, Rutgers – the State University of New Jersey, New Brunswick

Konstantin Y. Vinnikov
Department of Meteorology, University of Maryland, College Park

Steven E. Hollinger
Illinois State Water Survey, Champaign

Suxia Liu
Department of Hydrology, Institute of Geography, Chinese Academy of Sciences, Beijing

A. Namkhai
Environmental Consulting and Assessment Company, Ulaanbaatar, Mongolia

Submitted to GCIP Special Issue of
Journal of Geophysical Research

February, 1999

Corresponding Author:

Professor Alan Robock
Department of Environmental Sciences
Rutgers - The State University of New Jersey
14 College Farm Road
New Brunswick, NJ 08901-8551
Phone:  732-932-9478
Fax: 732-932-8644
E-mail:  robock@envsci.rutgers.edu



- 2 -

Abstract

Scales of soil moisture variations are important for understanding patterns of climate

change, for developing and evaluating land surface models, for designing surface soil moisture

observation networks, and for determining the appropriate resolution for satellite-based remote

sensing instruments for soil moisture.  Here we take advantage of a new archive of actual in situ

soil moisture observations from Illinois and Iowa in the United States, and from Russia,

Mongolia, and China, to evaluate the observed temporal and spatial scales of soil moisture

variations.  We separate the variance into two components, the very small scale of interest to

hydrologists, determined by soils, topography, vegetation, and root structure, and the large scale,

which is forced by the atmosphere.  This larger scale, determined by precipitation and evaporation

patterns, is of interest for global climate modeling, and we characterize the small scale as white

noise for our analysis, keeping in mind that it is an important component of soil moisture

variations for other problems.  We find that the atmospheric spatial scale for all regions is about

500 km, and the atmospheric temporal scale is about 2 months for the top 1-m soil layer.  The

temporal scale for the top 10-cm layer is slightly less than 2 months.  The white noise component

of the variance for temporal variations ranges from 50% for the top 10 cm to 20-40% for the top

1 m.  For spatial variations, the white noise component is the same for all depths, but varies with

region from 30% for Illinois to 70% for Mongolia.  Nevertheless, the red noise (atmospheric

component) can be seen in all regions.  These results are for Northern Hemisphere midlatitudes,

and would not necessarily apply to other latitudes.  Also, the results are based on observations

taken from grassland or agricultural areas, and may not be similar to those of areas with other

vegetation types.  In China, a region with substantial latitudinal variation, the temporal scale for

the top 1 m varies from 1 month in the south to 2.5 months in the north, demonstrating the
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control of potential evaporation on the scales.  Seasonal analysis of the scales of soil moisture for

Illinois shows that during the winter the temporal scales are long, though the spatial scales are

short.  Both appear to be attributable to the seasonal cycle of potential evaporation.



- 4 -

1.  Introduction

Soil moisture controls interactions between the land surface and the atmosphere, as

changes in soil moisture affect both the energy and water cycles.  Soil moisture plays an important

role in determining the amount of runoff that occurs, and thus the likelihood of droughts and

floods that may affect an area.  Recently, our soil moisture observations have been used to help

evaluate land-surface models [Robock et al., 1995, 1998; Douville et al., 1995; Yang et al., 1997;

Schlosser et al., 1997; Slater et al., 1998a,b; Mocko and Sud, 1998].  For correct interpretation

of results of such model-observation comparisons, it is critical to know the statistical structure of

the soil moisture field.

Studying the scales of soil moisture is very important for understanding many aspects of

weather and mesoscale phenomena, and for climate change.  For climate modeling, understanding

the scales of soil moisture helps determine the size of spatial grids and time steps.  Analysis of

scales can also explain how much soil moisture variation is due to small scale, short term

influences and how much is due to large scale, long term influences.  This knowledge is critical for

understanding how well a land surface model can be expected to perform when attempting to

reproduce soil moisture observations.  Scales also relate how soil moisture changes at a point

represent the area surrounding it.  Kagan [1979] developed a procedure for statistically optimal

averaging of multiple observations in space, to produce one value representative of the area.  This

technique requires knowledge of the spatial scale.  Already his technique has been used in our

work to compare soil moisture observations to land-surface model soil moisture calculations

[Entin et al., 1999], for averaging soil moisture for use in satellite remote sensing [Vinnikov et al.,

1999a], and for establishing a theory for spacing of soil moisture observation stations [Vinnikov et

al., 1999b].
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Remotely-sensed satellite observations are only able to measure soil moisture within 1-2

cm of the surface, but can retrieve information that well represents the top 10 cm layer [Vinnikov

et al., 1999a].  Roots of plants penetrate deeper than this, and extract moisture from much thicker

layers.  Therefore, it is important to know how the temporal and spatial scales of this upper layer

compare with those of the lower layers.

Hasselmann [1976] introduced the concept that a part of the climate system with high

frequency variations could induce another part of the climate system to exhibit low frequency

variations.  Frankignoul and Hasselmann [1977] gave an example of this theory by showing that

long-term sea surface temperature anomalies are a response of the oceanic surface layer to short

time scale atmospheric forcing.  Hasselmann [1976] also explained that the long-term climate

variations could be explained using a statistical model of a first order Markov process.  Delworth

and Manabe [1988] used the concepts of Hasselmann to theorize that soil moisture might be a

variable whose long-term anomaly patterns are responses of the land surface layer to the random

forcing of precipitation.

Delworth and Manabe [1988] analyzed results from the Geophysical Fluid Dynamics

Laboratory (GFDL) general circulation model (GCM) and developed the theory that soil moisture

variations in time correspond to a first-order Markov process.  They determined that the

autocorrelation function r(t) is exponential:

T

t

etr
−

=)( (1)

where t is the time lag and T is the scale of temporal autocorrelation, i.e., the e-folding time of soil

moisture.  They also determined that a good approximation of the time scale is
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where Wf is the field capacity and Ep is the potential evaporation.  This theory proved effective for

thirty stations from the former Soviet Union [Vinnikov and Yeserkepova, 1991].  Although Wf can

be defined for different layers, Ep is not layer specific.  This makes it difficult to determine the

relationship between temporal scale and soil layer depth.

Hasselmann [1976] suggested that there might be two dominant yet drastically different

time scales for a particular climate system.  Such drastically different estimates of the time scales

of soil moisture variability may be found in many publications.  Ghan et al. [1997] summarized

the processes that affect surface hydrology as soil characteristics, vegetation, and meteorology.

Beven and Kirby [1979] had also shown that topography has a significant impact on the spatial

variation of soil moisture.  Grouping soil characteristics, vegetation, and topography into a land

surface category and equating meteorology to atmospheric forcing, a separation of scales can be

seen between those processes that affect soil moisture.  The land surface type affects immediate

infiltration of water into and through the soil, as well as how much water can be held by the soil.

The atmospheric component is responsible for the amount of water available to the soil, through

rain or snowmelt, as well as the rate at which it is removed, through evapotranspiration

(controlled by temperature, downward radiation, humidity, and wind speed).

Temporally, gravitational drainage implies a timescale around 1 day for the land surface,

yet Delworth and Manabe [1988], in conjunction with Vinnikov and Yeserkepova [1991], and

Georgakakos et al. [1995], have shown a temporal scale on the order of months.  Spatially,

Nielsen et al. [1973], Vieira et al. [1981], and Vachaud et al. [1985] have indicated that the

spatial scale of autocorrelation of soil moisture is on the order of 10 m.  In comparison,
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Meshcherskaya et al. [1982] and Kontorschikov [1979] have shown spatial scales in Russia and

the Ukraine to be on the order of 100s of km.  In addition, Cayan and Georgakakos [1995]

suggested that spatial coherence of soil moisture in the United States is on the order of 100s of

km.  These differences can be reconciled by considering that the small scales (one day or 10 m)

are related to the hydrological scale, in many cases due to the similarity of scale with related soil

properties [Nielsen et al., 1973; Peck et al., 1977; Simmons et al., 1979].  The large scale is

related to the atmospheric forcing as shown by the connection between scales of precipitation and

soil moisture by Meshcherskaya et al. [1982], and by Cayan and Georgakakos [1995] who

connect large scale coherence of soil moisture with both precipitation and potential evaporation.

A schematic diagram of how the hydrological scale and the atmospheric scale relate to the

autocorrelation function of soil moisture may be seen in Figure 1.

In this paper, we examine the scales of temporal and spatial variation of soil moisture

using an extensive observed soil moisture data set.  In the next section, we describe the soil

moisture data we used for our analysis.  Then we present an overview of the procedure used for

calculating the scales of soil moisture.  Next, we discuss results from the various areas for which

we have soil moisture observations.  The final section presents discussion and conclusions.

2.  Data

We used data from multiple observation networks across the Northern Hemisphere

midlatitudes, all of which are available from the Global Soil Moisture Data Bank

(http://www.envsci.rutgers.edu/~robock).  There are 3 data sets from Asia: Russia, China, and

Mongolia (Figure 2).  In this paper, usage of the terms “Russia,” “China,” and “Mongolia” will

specifically refer to the areas of these countries for which we have soil moisture data and not to

the entire country.  The Russian set is comprised of 50 stations from the former Soviet Union and



- 8 -

is described by Vinnikov and Yeserkepova [1991].  The 78 stations from China are described by

Entin et al. [1999] and the 40 stations from Mongolia are described by Erdenentsetseg [1996]

and Robock et al. [1999].  All three networks used the gravimetric method to determine soil

moisture, with observations taken every 10 days for 10-cm layers in the top 1 m of soil.  In

Russia, the observations are taken at grass plots at observing stations, even though the

predominant vegetation in the region may be different.  In Mongolia, there are 23 stations at

pasture areas, 15 at wheat fields, and 2 stations with observations from both.  The vegetation for

the Chinese stations is a variety of crops, including potatoes, wheat, maize, sorghum, and peanut.

For Mongolia, we only have data for the growing season (April-October) and some stations in

Northern China and Russia have reduced or no observations during the winter.

We used two data sets from the United States.  The first is an 18-station network in

Illinois [Hollinger and Isard, 1994].  Data were taken from grassland plots at all 18 stations for

the top 10 centimeters and then at 20 centimeter increments down to a depth of two meters.  The

data were observed by neutron probe, which was calibrated by gravimetric measurements.  The

soil moisture data were not observed systematically, so there was not a set number of days

between each observation.  Different stations had observations on different days.  For purposes of

this study, it was necessary to bin the data in time so that a standard time step could be assumed

to evaluate the autocorrelation.  The 36 dates used for soil moisture observation in the other

countries were used to set up bins into which the data could be fitted.  If there was an observation

within four days of the bin center (i.e., the 8th, 18th, or 28th of each month) the observation was

placed into that bin.  If there were multiple observations taken during the time period of an

individual bin, then the following procedure was applied.  If the observations were all taken either

before or after the bin-center date, then the observation that was taken closest to the bin center
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was used.  If there were observations both before and after then only the two closest to the center

were considered.  These two values were weighted by the time from the bin center.  If there were

no observations taken in the range of the bin then that bin was set to an undefined value.  This

method obviously uses linear interpolation to estimate the data point, even though the thrust of

this research is to prove an exponential distribution of values, so this could add some error

variance to the calculations.  However interpolation was required infrequently and because this

interpolation was over a few days rather than on the order of months, it should not have had a

large effect on the analysis.

The second U.S. data set is from two catchments in southwestern Iowa (41.2°N, 95.6°W).

Each catchment contains records from three different observation areas.  Corn was planted in

each catchment, although two different techniques were used to prepare the plots for the planting

of the vegetation.  The data were observed for 13 consecutive layers; the top four were 7.8 cm

thick, the next four were 15.2 cm thick, and the next five were 30.5 cm thick.  For the first

catchment, the data from the top four layers were taken using gravimetric measurements and the

deeper measurements were made using neutron probes.  For the second catchment, gravimetric

techniques were used for the upper five layers and neutron probes were used for the deeper

layers.  For the most part, soil moisture was observed between April and October, on average

twice a month.  Although the observations were not taken at a standard time throughout the year,

if observations were taken, they were performed on the same day at all six sites.

Following Vinnikov et al. [1996], we compare the spatial autocorrelation functions of soil

moisture with those estimated for monthly precipitation.  Monthly precipitation data, from 1951

to 1982 for 180 stations in China are from a data set described by Shen [1991].  Precipitation data

for the United States are from the National Climatic Data Center’s summary of the day data set



- 10 -

[Hughes et al., 1992].

3.  Analysis

Theory.  Our analysis centers on the idea that there are two different scales that determine

the variations of soil moisture in time or space [Robock et al., 1995, Vinnikov et al., 1996;

Vinnikov et al., 1999b].  The small scale, which we refer to as the land-surface related, or

hydrological scale, produces differences in soil moisture because of different local soils,

topography, root structure and vegetation.  For our purposes, related to studying the global

climate system, we consider this portion of the variance to be interfering with our attempts to

evaluate the portion related to larger-scale structure, and so also refer to it as white noise.  For

other purposes, particularly related to studying the hydrology of a catchment or basin, this “white

noise” is actually the signal of interest.  As in equation 2, temporally the soil acts as a reservoir

(Wf) and the atmospheric signal corresponds to the flux (Ep).  Spatially, the analogy is slightly

different.  The larger scale, which we refer to as the atmospheric scale, demonstrates similarity of

soil moisture over larger distances because of the similarity of the atmospheric forcing upon soil

moisture, through similarities in precipitation and large-scale evapotranspiration patterns.  As

stated in section 1, the smaller scales are on the order of a few days, temporally, and tens of

meters, spatially.  Based on previous modeling [e.g., Delworth and Manabe, 1988] and limited

observational [Vinnikov and Yeserkepova, 1991; Vinnikov et al., 1996] results, the larger scales

are on the order of months and 100s of kilometers.  It is these large-scale values we seek to

determine using our more extensive observational data.

Estimates of the temporal autocorrelation of soil moisture may be expressed as

r(τ) = σs
2 exp(-τ/Ts) + σa

2 exp(-τ/Ta), (3)

where r(τ) is the covariance function and τ is the time lag [Vinnikov et al., 1999a].  The variance
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σs
2 and scale of temporal autocorrelation Ts are parameters of land surface-related variability, and

the variance σa
2 and scale Ta are parameters of the atmosphere-related variability.  Ta should be

equivalent to T in equation (2).  Because Ts << Ta, the first term in the right side of (3) may be

interpreted as the white noise component of the process.  The total estimated variance σo
2 is

σo
2=σs

2+σa
2, (4)

and the part of the variance related to white noise processes η is

η=σs
2/σo

2. (5)

Similarly, estimates of the spatial autocorrelation of a soil moisture field may be expressed

as

r(d) = σs
2 exp(-d/Ls) + σa

2 exp(-d/La), (6)

where r(d) is the covariance function, d is the distance, Ls is the scale of spatial autocorrelation of

the land surface-related variability and La is the scale of the atmosphere-related variability.

Because Ls << La, the first term on the right side of (6) may be interpreted as the white noise

component of the process.  Using the terminology of Delworth and Manabe [1988], we will also

refer to the atmosphere-related variability as a red noise signal because it is related to persistence,

in time or space, of soil moisture.

Procedure.  For every station the seasonal cycle of soil moisture was determined and these

values were subtracted from the observed values to create anomalies.  These anomaly values were

used to estimate the autocorrelation functions, to prevent correlating observations with the

seasonal cycle.  We performed the temporal analysis for the top 10-cm layer for Mongolia, China,

Iowa, and Illinois, and for the top 100-cm layer for these four regions and for Russia.  For

temporal autocorrelation, the smallest lag used was 10 days, and the lag was increased in 10-day

increments thereafter, up to a value of approximately four months.  To determine the temporal
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scale, the natural log of the estimates of the autocorrelation coefficients were plotted against the

lag.  At times it was necessary to truncate the curve as the estimates began to approach zero.  A

line was fit through these values and the negative inverse of the slope of this line was equated to

the time scale related to atmospheric forcing (e.g., Figure 3).  The exponential of the y-intercept

was equated with the amount of variance that was explained by the red noise signal.  To

determine the temporal scale of a region, the correlation coefficients were averaged together, at

each lag value, and plotted along with a 95% confidence interval bracket. An exception was that

no confidence intervals were plotted for the Iowa coefficients because only 6 stations were used.

The procedure used to fit the line attempted to intersect as many of the actual average points as

possible, while still staying within all of the confidence intervals.

The averaging done within data sets was to increase statistical significance, because many

of the stations do not have the very long records that are preferable for this type of statistical

analysis [Vinnikov et al., 1996].  The level of homogeneity over the averaging regions can

compromise this technique, and further discussion and analysis addresses some of the more

important points concerning the lack of homogeneity.

The spatial scale was determined in a similar fashion.  The autocorrelation was performed

for each pair of stations (within a single data set) and the correlation coefficient was plotted

against the distance between the stations.  The stations were then grouped into different distance

groups and the mean correlation coefficient value was computed for each distance grouping,

along with a 95% confidence interval.  This mean value and confidence interval were then

converted into natural log values and plotted against the mean distance for the each bin (e.g.,

Figure 4).  A line was fit through all the confidence intervals with an attempt to intersect as many

mean points as possible.  The negative inverse of the slope of the fit line determines the spatial
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scale in the soil moisture field related to atmospheric forcing, and the y-intercept represents the

amount of variance that is explained by the red noise signal.  When more than one line could be

reasonable fit using the plotted points and intervals, two were plotted that, while still giving

reasonable fits, would have the smallest and largest slopes.  These were then used to give a range

of possible values for the scales.

Due to the analysis technique, any non-atmospheric related variance was lumped into the

land-surface related variability category.  In this way the white noise signal generated by sampling

error or errors made in taking the soil moisture observations are relegated to the land-surface

variability.

4.  Results

4.1 Temporal Scale

Results for Illinois temporal correlations are presented in Figure 3.  Similar analyses for

China, Mongolia, and Iowa are presented in Figures 5-7.  Table 1 provides a summary of the

empirical estimates of the temporal scale for these regions.  There appears to be relative

agreement for each layer between the different locations.

Analyses for Mongolia and Iowa do not include any winter observations, excluding the

influence of months with lower potential evaporation on the scale estimate.  Following equation

(2), this emphasis on months with higher potential evaporation will cause the presented estimates

of the temporal scale to be underestimates.  The amount of underestimation is presented later in

this section.

The temporal scale estimates increase slightly with depth, though this increase is too small

to be statistically significant.  With depth there is a corresponding increase in the amount of the

variance that is explained by the red noise signal.
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Given the theory that the time scale is dependent upon the potential evaporation

[Delworth and Manabe, 1988] it is important to consider the range latitudes of the stations for

each region.  The theory also shows a dependence upon the field capacity.  Although not all the

stations have field capacity data, there is sufficient evidence that there is no systematic pattern of

field capacity (e.g., Fig. 6 [Robock et al., 1998]) and that, in general, there are similar values for

all the stations within a region, with values randomly positioned.

Both Illinois and Mongolia are in a relatively tight range of latitudes, and thus in both, the

total area represented likely experiences similar potential evaporation.  The same cannot be said

for China.  Because of this we divided China into three regions: Northeast (Manchuria), Central,

and South.  The stations that comprise each of these areas are shown in Figure 1.  The results are

shown in Figure 8a and summarized in Table 2.  For the entire top 1 m the temporal scale

decreases in the direction of the Equator.  To get a better representation of the difference between

the scales of these three regions it was necessary to do a second estimate of the temporal scale,

using only data from March through November (Figure 8b, Table 2).  This helps alleviate the bias

that results from fewer winter time observations in the analysis for stations in the Northeast, and

to a lesser extent, in the Central region.  From this second analysis we see an even stronger

distinction between the three regions.

Using these results we estimate that excluding the winter months for scale values around

two months lowers the estimate of the temporal scale anywhere between 0.2 and 0.6 months.

This would cause the Iowa temporal scale estimates to match the Illinois estimates.  The

Mongolian estimates would also be closer to the values estimated for Russia and Northern China.

To further investigate the vertical dependence of the time scale, we analyzed data for the

layers deeper than 1 m for Illinois and Iowa.  In the deeper layers, 1-2 m, the temporal scale
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becomes even larger.  For both Illinois and Iowa the values appear to be in the range of 5-7

months.  The amount of variance explained by the red noise signal is above 90%, although the

source of the signal may not be exclusively from the atmospheric influences.  In addition, the

amount of variance of soil moisture in the layer between 1 m and 2 m depth is much smaller

(about 75% less) than in the top 1 m layer.

This finding of longer time scales, though still on the order of months, will help evaluate

some land-surface models that incorporate a deep layer, or recharge zone, that is beneath the

model’s rooting depth (e.g., SSiB [Xue et al., 1991] For the most part these models have gone

untested as to their simulation of deep layer soil moisture.  In models and in nature it is this layer

that is sometimes responsible for providing the upper layers with moisture in times of water stress.

When performing long-term climate modeling it is important that this layer acts correctly in terms

of how quickly it can provide moisture.

4.2  Spatial Scale

The analysis of the spatial autocorrelations for Illinois is presented in Figure 4.  Similar

analyses for Russia, China and Mongolia are presented in Figures 9-11.  A summary of the

empirical estimates of the spatial scales of soil moisture variations for the different regions is given

in Table 3.  The results indicate that the spatial scale does not appear to change significantly with

depth.  However, as this is an initial study, our emphasis is on finding the most likely range of the

spatial scale, as opposed to one specific number.  With further study and a greater amount of data,

in the future it may be possible that a discernable difference in scale is found for different layers.

Our results indicate that over the entire state of Illinois the soil moisture changes in a

similar fashion.  This is understandable, as on a single day the weather over one area of Illinois is

probably roughly equivalent to any other spot in Illinois.  This explanation is substantiated when
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we compare the difference between the aggregate of 10 days of weather between two different

locations in Illinois.  The variance in placement of convective activity is probably lessened because

a portion of the precipitation related to convective activity is directed into runoff.  Looking over a

10-day period may also smooth out the spatial distribution of where convective activity occurs.

One of the limitations of the spatial analysis of Illinois is that the spatial scale is as great as the

maximum distance between any of the two observing stations used in the analysis.  This precludes

detecting a non-exponential relationship at greater distances.

The observation network for the 50 stations in Russia spans more than 1500 km, mainly in

a longitudinal direction.  The spatial scale for the top 1 m falls into the range of 500-750 km,

which agrees with Meshcherskaya et al. [1982], who presented results for May, June, September

and October.  In our case, however, data from the entire year (when available for the winter) have

been used.  Again, considering the weather patterns that affect Russia helps to explain the spatial

scale.  Weather systems tend to move from west to east over Russia, so different parts of Russia

will see similar weather, albeit on different days.

The station network for China spans a great distance (> 1,000 km), but much of the extent

is in a latitudinal direction.  One might expect the spatial scales to be smaller, but the results show

a similar spatial scale for China as for the other regions.  We attribute this to the similarity of

precipitation and temperature in the meridional direction [Domrös and Peng, 1988], for the

regions in which the soil moisture data was observed.

Mongolia also appears to have similar spatial scales (200-400 km), but there is less

certainty in this estimate because of the range of altitudes in the station network.  Unlike for the

other networks, in Mongolia there is a greater chance for a mountain to be between two stations.

This works to decrease the correlation between two stations as mountains alter air mass



- 17 -

properties and precipitation patterns.  A large range of altitudes will perturb the potential

evaporation field due to the atmosphere’s decreasing ability to hold moisture with increasing

altitude.  The mountainous terrain also explains the low strength of the red noise signal found in

the estimates.  This implies the potential for small spatial scales for other mountainous regions

around the globe.

4.3.  Seasonality

In addition to knowing the scales of variation it is important to know how these scales

vary during the year.  The seasonal variation might also help explain other factors that affect the

overall scales that might be missed in the annual computations.  For example, the effect of

potential evaporation on the temporal scales in China was more pronounced when the winter

months were excluded.

The Illinois data set is the most appropriate for further analysis of seasonal scale variations

due to the homogeneity of the network.  Using a 5-point binomial smoothing on the correlation

values for each month, we used these values in the following equation to determine the time scale

for each month.  For this analysis, the correlation value for a given month is the correlation

between the last observation of the prior month and the last observation of that month (i.e. r for

March, lag one, correlates the value on Feb. 28 and March 28.  r for March, lag two, correlates

the value on Feb. 28 and April 28.).  Using the correlation for one month-and two-month lags, we

were able to estimate the scale for each month of the year, Tm:

( )
( )1,

2,

ln

ln

m

m
m r

r
T = (7)

where m is the month for which the time scale is being calculated, rm,1 is the correlation value

between month m and month m+1, and rm,2 is the correlation value between month m and month
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m+2.  Figure 12 shows the seasonality of the temporal scale for both the top 1 m and top 10 cm

soil layers.  During the winter months the scales are largest due to the drop in potential

evaporation that results from the drop in incident solar radiation.

The surprising feature is the increase in time scale for the top 1 m that occurs from spring

to the summer months.  The link between soil moisture and local precipitation could explain this

increase.  Findell and Eltahir [1997] found that for June, July, and August, rainfall is better

correlated with prior soil moisture than with prior rainfall.  As rainfall is a source of moisture for

the ground, the soil moisture could be helping its own anomalies persist longer.  Another

possibility is that the time scale’s dependence upon potential evaporation might decrease during

severe dry conditions.

Figure 13 shows the spatial correlation for the four seasons, summarized in Table 4.

Station pairs were bined by distance in a similar fashion as for the previous spatial scale analysis.

The regression lines in Figure 13 are least-squares best-fit lines.  Also in Table 4 is the summary

of a similar analysis of the spatial scale of monthly precipitation.  The smaller soil moisture spatial

scale in the winter and larger in the summer implies a stronger dependence on the potential

evaporation than on the precipitation, which exhibits almost the opposite cycle.  Further study is

needed to determine if the deviation of the soil moisture scale from the precipitation scale is due

to the magnitude of the potential evaporation, the scale of the potential evaporation, or another

aspect of the system.

5.  Discussion and Conclusions

The major conclusions of this paper are:

• The temporal autocorrelation functions of soil moisture were studied using in situ soil

moisture for different climatic regions and different soil layers.  For all the regions studied, the



- 19 -

shape of the autocorrelation function may be approximated by an exponential statistical model

and may be partitioned into two components.  One of them, the red noise component of

variability, is related to atmospheric forcing and has a time scale of roughly two to three

months for all locations studied.  The other component is related to short term processes such

as infiltration, cloud coverage, precipitation, and drainage.  These estimates of the temporal

scale for the upper 1 m are in good agreement with theoretical estimates of Delworth and

Manabe [1988], which are directly related to field capacity and potential evaporation.  The

difference between the scales of the upper 10 cm and 1 m layers are not significantly different.

For soil layers beneath 1 m, in Illinois and Iowa, the scales of temporal autocorrelation are

much longer and may reach or exceed 6 months.

• In China, the only region with substantial latitudinal variations, the temporal scale for the top

1 m varies from 1 month in the south to 2.5 months in the north, demonstrating the control of

potential evaporation on the scales.

• Spatial autocorrelation functions of soil moisture were studied using in situ soil moisture for

different climatic regions and different soil layers.  The scales of spatial autocorrelation for

both the upper 10 cm and upper 1 m are on the order of several hundred km for all locations.

There is good agreement between the soil moisture scales and scales of monthly precipitation,

which may be the main factor of atmospheric forcing.

• The temporal scales have seasonal variation and maximum values in the winter.

• The limited volume of data does not allow extensive study of seasonal spatial scales, though

as precipitation scales and potential evaporation change with season it is expected that soil

moisture spatial scales exhibit similar behavior.  However, we are unclear of the magnitude of

the influence of these forces on the spatial scale and how they will change with season.
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• Previously there was a dearth of long term soil moisture data to be used to study the nature of

soil moisture variation, land surface modeling, and remote sensing techniques.  This research

has introduced several new observed soil moisture data sets for scientific use.  Here the data

have been used to address an issue that had been difficult to study because of a lack of

sufficient useable data.  These data will continue to be useful in other studies as well.

Previous work, by Nielsen et al. [1973], Vieira et al. [1981], and Vachaud et al. [1985]

have suggested that there is a spatial scale of soil moisture, on the order of 10 m.  Their work

implied that beyond this distance there was too much variability in the soil properties to maintain a

correlation of soil moisture.  Strictly looking at single points in time, Dubayah et al. [1997] have

shown that there is log-log linearity of the moments of soil moisture.  Their work implies the

maximum amount of variability caused by different land-surface types could be reached at

distances on the order of a few km, for relatively homogeneous regions.  However, Kontorschikov

[1979], Meshcherskaya et al. [1982] and Cayan and Georgakakos [1995] have shown a second

factor is able to impose large-scale coherence of soil moisture variations. Meshcherskaya et al.

[1982] and Cayan and Georgakakos [1995] have related this coherence to both large-scale

precipitation patterns and potential evaporation.  In this work, we have interpreted this to mean

that there is a similar theory for spatial autocorrelation of soil moisture as for the temporal

autocorrelations.  There exist two separate scales of variation, one smaller scale, dominated by

land-surface variations, and a second larger scale influenced by meteorological processes.  Using

the soil moisture observation data has shown that this larger scale exists, and empirical estimates

of the scale of spatial autocorrelations agree with the findings of Kontorschikov [1979] and

Meshcherskaya et al. [1982].  The data sets described here are not of a high enough resolution to

study the small hydrological scale variations of soil moisture.
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Although new data sets have been introduced there are still f ew data sets of both high

spatial and temporal resolution, that exist for several years, and which are adequate to study soil

moisture variations at multiple scales.  This leads us to consider using alternative forms of soil

moisture data.  One such “data set” comes from the European Centre for Medium-Range Weather

Forecasting reanalysis (ERA) project [Gibson et al., 1997].  Although these are model-derived

estimates of soil moisture, the reanalysis procedure is able to incorporate some observations into

the estimates and still allow the land-surface to come into equili brium with the local atmosphere.

We are in the process of studying the soil moisture generated by ERA.  If the temporal and spatial

scales estimates derived from the ERA soil moisture data match those seen in observations, then

perhaps the completeness of this manufactured data set can be used for further investigation.  One

such investigation would be into the relationship between potential evaporation and soil moisture

scales.  In addition, further investigation into the seasonality of scales could be performed.  Using

the data from ERA might also allow first-guess type estimates of scales in regions for which we

have no soil moisture observations.

Our results leave unresolved the question of whether it is necessary to resolve the sub-grid

scale variabili ty of soil moisture in global climate simulations.  It is not necessary simply to

capture the monthly-average effects of atmospheric forcing on soil moisture.  However, especially

for heterogeneous vegetation, soil and topography on the mesoscale intermediate between the

hydrological and atmospheric scales we found, there may be non-linear interactions with

mesoscale atmospheric circulations that feed back on the soil moisture.  For short-term weather

forecasts, higher resolution treatment of soil moisture clearly is important.

Our spatial scale results used all the long-term (> 10 years) records of soil moisture

observations that we are aware of.  All come from Northern Hemisphere midlatitudes, and all are
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for rather short vegetation.  We look forward to evaluating records from other climates, especially

the tropics, and from forested regions, when they become available, to see how representative

these results are.  For the temporal scale, we have long-term observations from a few forested

regions at water balance stations in Russia, which we are currently evaluating, but we expect that

interactions between the canopy and the soil in the tropics might be rather different.
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Table 1.  Scales of temporal correlation for the atmospheric portion of the variance (Ta) for the

top 10-cm and top 1-m soil layers for the different regions.  Also shown are the standard

deviation (σo; see equation 4) and the portion of the variance that can be attributed to white

noise random variations (η; see equation 5).

0-10 cm soil layer 0-100 cm soil layer

σo

[cm]
η

[%]
Ta

[Month]
σo

[cm]
η

[%]
Ta

[Month]

Illinois, U.S. 0.85 40-60 1.5-1.8 4.0 10-20 1.8-2.1

China 0.57 40-65 1.1-2.4 3.8 20-40 1.6-2.4

Mongolia 0.51 50-60 1.5-1.7 4.7 35-50 1.6-1.8

Iowa, U.S. 0.65 60-70 1.1-1.5 4.5 10-25 1.3-1.8

Table 2.  Temporal scale (months) for China for the top 1 m for the 3 regions shown in Figure 5,

both for the full year and for only March through November (No Winter), to account for

sampling problems with fewer observations in the Northern region in the winter.  The overall

scale for the full year for all regions considered together is 1.6-2.4 months.

Full Year No Winter

Northern 2.8 2.5

Central 1.9 1.5

Southern 1.6 1.0
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Table 3. Scales of spatial correlation for the atmospheric portion of the variance (La) for the top

10-cm and top 1-m soil layers for the different regions.  Also shown are the standard deviation

(σo; see equation 4) and the portion of the variance that can be attributed to white noise

random variations (η; see equation 5).

0-10 cm soil layer 0-100 cm soil layer

σo

[cm]
η

[%]
La

[km]
σo

[cm]
η

[%]
La

[km]

Illinois, U.S. 0.85 30-35 380-490 4.0 30-35 510-670

China 0.57 45-50 500-550 3.8 55-65 475-575

Mongolia 0.51 60-80 200-400 4.7 60-80 200-400

Russia - - - 3.1 55-65 500-750

Table 4. Estimates of the seasonal values of the scales of spatial correlation for the atmospheric

portion of the spatial correlation for Illinois top 1 m soil moisture.  The portion of the signal

attributable to white noise is also shown for soil moisture.  The spatial scale for monthly

precipitation is also shown.

La [km]

Season η [%] Soil Moisture Precipitation

Winter (DJF) 35-40 300-350 550-600

Spring (MAM) 15-20 400-450 350-400

Summer (JJA) 25-30 575-650 300-350

Autumn (SON) 25-30 525-575 450-500
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List of Figures

1. Schematic diagram of hydrological and meteorological scales of soil moisture variations from

Robock et al. [1998].  r is the autocorrelation function.  The scales are determined separately

by the two terms from equation (3) for the temporal scale, and equation (6) for the spatial

scale.

2. Stations used in this analysis.  The three boxed areas in China: Northern, Central, and

Southern, were used for specific regional study of the temporal scales, discussed in section

4.1.

3. Mean temporal autocorrelation values and best fit line, for the 17 stations in Illinois.  The

error bars denote the 95% confidence interval about each mean point.

4. Spatial correlation points and best fit line for Illinois, with mean spatial autocorrelation values

for each distance bin for the 17 soil moisture stations in Illinois.  Also shown are similar points

for monthly precipitation for 87 stations in the Illinois area.  All error bars denote the 95%

confidence interval about each mean point.

5. Same as Figure 3 except using 78 stations from China.

6. Same as Figure 3 except using 42 stations from Mongolia

7. Same as Figure 3 except using the 6 soil moisture records from Iowa.  Due to the low number

of records, the 95% confidence intervals were omitted.

8. Similar to Figure 3, except each line represents data only from stations located within each

designated area shown in Figure 2 for the top 1 m.

9. Same as Figure 4 except using 50 stations from Russia, and only the top 1 m soil moisture

data.

10. Same as Figure 4, except using 78 soil moisture and 275 precipitation stations from China.
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11. Same as Figure 4 except using 42 stations from Mongolia.

12. Seasonal temporal scale for Illinois.  See text for explanation of how the scales were

calculated.

13. Same as Figure 4, except each line represents data only from those months corresponding to

the designated season.  Analysis shown is only for the top 1 m.  Regression lines were

determined using the least-squares method.
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