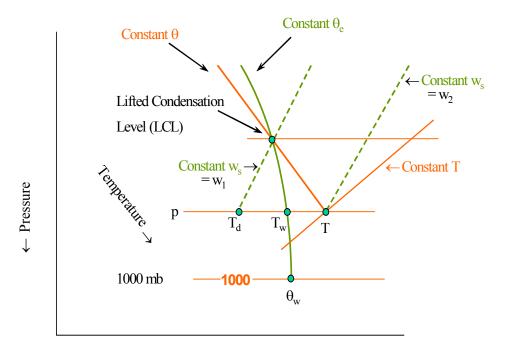
HUMIDITY VARIABLES

The following terms are all used to indicate humidity, the amount of moisture or water vapor in the atmosphere:

Symbo	<u>Units</u>	<u>Name</u>	Definition
ρ_{ν}	kg/m ³	absolute humidity	partial density of water vapor
n_v r	molecules/m ³	absolute humidity	number density of water vapor
e	mb	vapor pressure	partial pressure of water vapor
w	g/kg	mixing ratio rati	o of mass of water vapor (M_v) to mass of dry air (M_d)
q	g/kg s	pecific humidity rati	o of mass of water vapor (M_v) to mass of moist air (M)
	$w = \frac{M_v}{M_d} = \frac{\rho}{\rho}$	$q = \frac{M_v}{M} = \frac{\rho_v}{\rho}$	$w \approx q$ $(M = M_v + M_d)$ $(\rho = \rho_v + \rho_d)$


(Each of the above quantities can be expressed as the **saturation** quantity with the addition of an *s* subscript. This is the maximum value that the quantity can reach at a given temperature and pressure when the air is in **equilibrium** with an underlying flat water surface, and indicates that the air can hold no more water vapor.)

RH % relative humidity
$$RH = \frac{w}{w_s} = \frac{e}{e_s} \left(\frac{p - e_s}{p - e} \right) \approx \frac{e}{e_s}$$

$$T_d \quad ^{\circ}C \quad \text{dew point temperature} \quad \text{temperature to which air must be cooled at constant pressure for it to become saturated with respect to a plane surface of water. } e_s(T_d) = e, \text{ or } T_d \text{ is the temperature at which } w_s \text{ becomes equal to } w. \text{ Therefore } RH = \frac{w_s(T_d, p)}{w_s(T, p)}$$

$$T_w \quad ^{\circ}C \quad \text{wet bulb temperature} \quad \text{temperature to which a parcel of air is cooled by evaporating water into it at a constant pressure until the air is saturated with respect to a plane surface of water.}$$

These variables can be illustrated on a skew T-log p diagram as shown on the next page.

In this example, for a parcel with temperature T, dew point T_d , and pressure p:

$$w = w_s(T_d) = w_1$$

$$w_s = w_s(T) = w_2$$

$$RH = \frac{w_1}{w_2}$$

A parcel rising from point (T, p) will go up the dry adiabat (constant θ line) until it reaches the LCL, and will then ascend along the moist adiabat (constant θ_e line).