HUMIDITY VARIABLES

The following terms are all used to indicate humidity, the amount of moisture or water vapor in the atmosphere:

Symbol Units

$\rho_{v} \quad \mathrm{~kg} / \mathrm{m}^{3} \quad$ absolute humidity
n_{v} molecules $/ \mathrm{m}^{3}$ absolute humidity
$e \quad \mathrm{mb} \quad$ vapor pressure
$w \quad \mathrm{~g} / \mathrm{kg} \quad$ mixing ratio
$q \quad \mathrm{~g} / \mathrm{kg} \quad$ specific humidity ratio of mass of water vapor $\left(M_{v}\right)$ to mass of moist air (M)

$$
w=\frac{M_{v}}{M_{d}}=\frac{\rho_{v}}{\rho_{d}} \quad q=\frac{M_{v}}{M}=\frac{\rho_{v}}{\rho} \quad w \approx q \quad\left(M=M_{v}+M_{d}\right) \quad\left(\rho=\rho_{v}+\rho_{d}\right)
$$

(Each of the above quantities can be expressed as the saturation quantity with the addition of an s subscript. This is the maximum value that the quantity can reach at a given temperature and pressure when the air is in equilibrium with an underlying flat water surface, and indicates that the air can hold no more water vapor.)
$R H \quad \% \quad$ relative humidity $\quad R H=\frac{w}{w_{s}}=\frac{e}{e_{s}}\left(\frac{p-e_{s}}{p-e}\right) \approx \frac{e}{e_{s}}$
$T_{d} \quad{ }^{\circ} \mathrm{C}$ dew point temperature temperature to which air must be cooled at constant pressure for it to become saturated with respect to a plane surface of water. $e_{s}\left(T_{d}\right)=e$, or T_{d} is the temperature at which w_{s} becomes equal to w. Therefore $R H=\frac{w_{s}\left(T_{d}, p\right)}{w_{s}(T, p)}$
$T_{w} \quad{ }^{\circ} \mathrm{C}$ wet bulb temperature temperature to which a parcel of air is cooled by evaporating water into it at a constant pressure until the air is saturated with respect to a plane surface of water.

These variables can be illustrated on a skew T- log p diagram as shown on the next page.

In this example, for a parcel with temperature T, dew point T_{d}, and pressure p :

$$
\begin{gathered}
w=w_{s}\left(T_{d}\right)=w_{1} \\
w_{s}=w_{s}(T)=w_{2} \\
R H=\frac{w_{1}}{w_{2}}
\end{gathered}
$$

A parcel rising from point (T, p) will go up the dry adiabat (constant θ line) until it reaches the LCL, and will then ascend along the moist adiabat (constant θ_{e} line).

