The second GeoMIP special collection was joint between Atmospheric Chemistry and Physics and Geoscientific Model Development. Submissions to this special issue are now closed. The special issue contains a total of 34 peer-reviewed publications.
- Kravitz, B., A. Robock, O. Boucher, M. Lawrence, J. C. Moore, U. Niemeier, T. Storelvmo, S. Tilmes, and R. Wood (2018), The Geoengineering Model Intercomparison Project: Introduction to the Second Special Issue, Atmospheric Chemistry and Physics, doi:10.5194/acp-special_issue376-preface.
(hyperlink)
- Ahlm, L., A. Jones, C. W. Stjern, H. Muri, B. Kravitz, and J. E. Kristjánsson (2017), Marine cloud brightening – as effective without clouds, Atmospheric Chemistry and Physics, 17, 13071-13087, doi:10.5194/acp-17-13071-2017.
(hyperlink)
- Aswathy, V. N., O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas (2015), Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering, Atmospheric Chemistry and Physics, 15, 9593-9610, doi:10.5194/acp-15-9593-2015.
(hyperlink)
- Davis, N. A., D. J. Seidel, T. Birner, S. M. Davis, and S. Tilmes (2016), Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations, Atmospheric Chemistry and Physics, 16, 10083-10095, doi:10.5194/acp-16-10083-2016.
(hyperlink)
- Gabriel, C. and A. Robock (2015), Stratospheric geoengineering impacts on El Niño/Southern Oscillation, Atmospheric Chemistry and Physics, 15, 11949-11966, doi:10.5194/acp-15-11949-2015.
(hyperlink)
- Gabriel, C. J., A. Robock, L. Xia, B. Zambri, and B. Kravitz (2017), The G4Foam Experiment: Global climate impacts of regional ocean albedo modification, Atmospheric Chemistry and Physics, 17, 595-613, doi:10.5194/acp-17-595-2017.
(hyperlink)
- Gasparini, B., S. Münch, L. Poncet, M. Feldmann, and U. Lohmann, Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?, Atmospheric Chemistry and Physics, 17, 4871-4885, doi:10.5194/acp-17-4871-2017.
(hyperlink)
- Guo, A., J. C. Moore, and D. Ji (2018), Tropical atmospheric circulation response to the G1 sunshade geoengineering radiative forcing experiment, Atmospheric Chemistry and Physics, 18, 8689-8706, doi:10.5194/acp-2018-8689.
(hyperlink)
- Ji, D., S. Fang, C. Curry, H. Kashimura, S. Watanabe, J. Cole, A. Lenton, H. Muri, B. Kravitz, and J. Moore (2018), Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering, Atmospheric Chemistry and Physics, 18, 10133-10156, doi:10.5194/acp-18-10133-2018.
(hyperlink)
- Jones, A. C., J. M. Haywood, and A. Jones (2016), Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection, Atmospheric Chemistry and Physics, 16, 2843-2862, doi:10.5194/acp-16-2843-2016.
(hyperlink)
- Kashimura, H., M. Abe, S. Watanabe, T. Sekiya, D. Ji, J. C. Moore, J. N. S. Cole, and B. Kravitz (2017), Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: Analysis of the Geoengineering Model Intercomparison Project G4 scenario, Atmospheric Chemistry and Physics, 17, 3339-3356, doi:10.5194/acp-17-3339-2017.
(hyperlink)
- Kleinschmitt, C., O. Boucher, S. Bekki, F. Lott, and U. Platt (2017), The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations, Geophysical Model Development, 10, 3359-3378, doi:10.5194/gmd-10-3359-2017.
(hyperlink)
- Kleinschmitt, C., O. Boucher, and U. Platt (2018), Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2 injection studied with the LMDZ-S3A model, Atmospheric Chemistry and Physics, 18, 2769-2786, doi:10.5194/acp-18-2769-2018.
(hyperlink)
- Kravitz, B., A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe (2015), The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results, Geoscientific Model Development, 8, 3379-3392, doi:10.5194/gmd-8-3379-2015.
(hyperlink)
- Kravitz, B., P. J. Rasch, H. Wang, A. Robock, C. Gabriel, O. Boucher, J. N. S. Cole, J. Haywood, D. Ji, A. Jones, A. Lenton, J. C. Moore, H. Muri, U. Niemeier, S. Phipps, H. Schmidt, S. Watanabe, S. Yang, and J.-H. Yoon (2018), The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering, Atmospheric Chemistry and Physics, 18, 13097-13113, doi:10.5194/acp-18-13097-2018.
(hyperlink)
- Laakso, A., H. Korhonen, S. Romakkaniemi, and H. Kokkola, Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas, Atmospheric Chemistry and Physics, 17, 6957-6974, doi:10.5194/10.5914/acp-17-6957-2017.
(hyperlink)
- MacMartin, D. G. and B. Kravitz (2016), Dynamic climate emulators for solar geoengineering, Atmospheric Chemistry and Physics, 16, 15789-15799, doi:10.5194/acp-16-15789-2016.
(hyperlink)
- Niemeier, U. and C. Timmreck (2015), What is the limit of climate engineering by stratospheric injection of SO2?, Atmospheric Chemistry and Physics, 15, 9129-9141, doi:10.5194/acp-15-9129-2015.
(hyperlink)
- Niemeier, U. and H. Schmidt (2017), Changing transport processes in the stratosphere by radiative heating of sulfate aerosols, Atmospheric Chemistry and Physics, 7, 14871-14886, doi:10.5194/acp-17-14871-2017.
(hyperlink)
- Nowack, P. J., N. L. Abraham, P. Braesicke, and J. A. Pyle (2016), Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality, Atmospheric Chemistry and Physics, 16, 4191-4203, doi:10.5194/acp-16-4191-2016.
(hyperlink)
- Russotto, R. and T. P. Ackerman (2018), Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble, Atmospheric Chemistry and Physics, 18, 2287-2305, doi:10.5194/acp-2018-2287.
(hyperlink)
- Russotto, R. and T. P. Ackerman (2018), Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction, Atmospheric Chemistry and Physics, 18, 11905-11925, doi:10.5194/acp-2018-11905.
(hyperlink)
- Smyth, J. E., R. D. Russotto, and T. Storelvmo (2017), Thermodynamic and dynamic responses of the hydrological cycle to solar dimming, Atmospheric Chemistry and Physics, 17, 6439-6453, doi:10.5194/acp-17-6439-2017.
(hyperlink)
- Stjern, C. W., H. Muri, L. Ahlm, O. Boucher, J. N. S. Cole, D. Ji, A. Jones, J. Haywood, B. Kravitz, A. Lenton, J. C. Moore, U. Niemeier, S. J. Phipps, H. Schmidt, S. Watanabe, and J. E. Kristjánsson (2018), Response to marine cloud brightening in a multi-model ensemble, Atmospheric Chemistry and Physics, 18, 621-634, doi:10.5194/acp-18-621-2018.
(hyperlink)
- Tilmes, S., M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English (2015), A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models, Geoscientific Model Development, 8, 43-49, doi:10.5194/gmd-8-43-2015.
(hyperlink)
- Xia, L., A. Robock, S. Tilmes, and R. R. Neely (2016), Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate, Atmospheric Chemistry and Physics, 16, 1479-1489, doi:10.5194/acp-16-1479-2016.
(hyperlink)
- Visioni, D., G. Pitari, and V. Aquila (2017), Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide, Atmospheric Chemistry and Physics, 17, 3879-3889, doi:10.5194/acp-17-3879-2017.
(hyperlink)
- Visioni, D., G. Pitari, V. Aquila, S. Tilmes, I. Cionni, G. Di Genova, and E. Mancini (2017), Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Chemistry and Physics, 17, 11209-11226, doi:10.5194/acp-17-11209-2017.
(hyperlink)
- Visioni, D., G. Pitari, P. Tuccella, and G. Curci (2018), Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols, Atmospheric Chemistry and Physics, 18, 2787-2808, doi:10.5194/acp-2018-2787.
(hyperlink)
- Visioni, D., G. Pitari, and G. di Genova (2018), Upper tropospheric ice sensitivity to sulfate geoengineering, Atmospheric Chemistry and Physics, submitted.
(hyperlink)
- Wang, Q., J. C. Moore, and D. Ji (2018), A statistical examination of the effects of stratospheric sulphate geoengineering on tropical storm genesis, Atmospheric Chemistry and Physics, 18, 9173-9188, doi:10.5194/acp-2018-9173.
(hyperlink)
- Wei, L., D. Ji, C. Miao, and J. C. Moore (2018), Global streamflow and flood response to stratospheric aerosol geoengineering, Atmospheric Chemistry and Physics, submitted.
(hyperlink)
- Xia, L., P. J. Nowack, S. Tilmes, and A. Robock (2017), Impacts of Stratospheric Sulfate Geoengineering on Tropospheric Ozone, Atmospheric Chemistry and Physics, 17, 11913-11928, doi:10.5194/acp-17-11913-2017.
(hyperlink)
- Zhao, L., Y. Yang, W. Cheng, D. Ji, and J. C. Moore, Glacier evolution in high mountain Asia under stratospheric sulfate aerosol injection geoengineering, Atmospheric Chemistry and Physics, 17, 6547-6564, doi:10.5194/acp-17-6547-2017.
(hyperlink)