GeoMIP Publications

Last Updated 13 February 2024

This page lists all publications either officially associated with GeoMIP or using GeoMIP model output. If you have used GeoMIP output in any peer reviewed publication, technical paper, or any other document, please email one of the co-chairs, who will happily add your publication to this page. If you are interested in investigating a certain aspect of model response in GeoMIP, please email one of the co-chairs so they can help you obtain model output and put you in contact with others who may be interested in similar topics.

Many of the papers listed below are published in special sections of Journal of Geophysical Research (Atmospheres); Atmospheric Chemistry and Physics / Geoscientific Model Development (joint special issue) and Atmospheric Chemistry and Physics / Earth System Dynamics (joint special issue).

Listed in reverse chronological order (newest first)


Jump to Peer Reviewed Publications    Jump to Non-Peer Reviewed Publications

Peer Reviewed Publications

(2024|2023|2022|2021|2020|2019|2018|2017|2016|2015|2014|2013|2012|2011)

    2024

  1. Wunderlin, E., Chiodo, G., Sukhodolov, T., Vattioni, S., Visioni, D., & Tilmes, S. (2024): Side effects of sulfur-based geoengineering due to absorptivity of sulfate aerosols. Geophysical Research Letters, 51, e2023GL107285, https://doi.org/10.1029/2023GL107285.
    (hyperlink)

  2. Liu, Z., Lang, X., & Jiang, D. (2024): Stratospheric aerosol injection geoengineering would mitigate greenhouse gas-induced drying and affect global drought patterns. Journal of Geophysical Research: Atmospheres, 129, e2023JD039988, https://doi.org/10.1029/2023JD039988.
    (hyperlink)

  3. 2023

  4. Leed, D., Sparrow, S. N., Min, S., Yeh, S. & Allen, M. (2023): Physically based equation representing the forcing-driven precipitation in climate models. Environmental Research Letters, doi:10.1088/1748-9326/acf50f.
    (hyperlink)

  5. Duffey, A., Irvine, P., Tsamados, M., & Stroeve, J. (2023): Solar Geoengineering in the Polar Regions: A Review. Earths Future, 11, e2023EF003679, https://doi.org/10.1029/2023EF003679
    (hyperlink)

  6. Diamond, M.S., Wanser, K. & Boucher, O. (2023): Cooling credits are not a viable climate solution. Climatic Change, 176, 96, https://doi.org/10.1007/s10584-023-03561-w.
    (hyperlink)

  7. Visioni, D., Kravitz, B., Robock, A., Tilmes, S., Haywood, J., Boucher, O., Lawrence, M., Irvine, P., Niemeier, U., Xia, L., Chiodo, G., Lennard, C., Watanabe, S., Moore, J. C., and Muri, H. (2023): Opinion: The scientific and community-building roles of the Geoengineering Model Intercomparison Project (GeoMIP) - past, present, and future. Atmos. Chem. Phys., 23, 5149-5176, https://doi.org/10.5194/acp-23-5149-2023.
    (hyperlink)

  8. Liu, A., Moore, J. C., and Chen, Y. (2023): PInc-PanTher estimates of Arctic permafrost soil carbon under the GeoMIP G6solar and G6sulfur experiments Earth Syst. Dynam., 14, 39-53, https://doi.org/10.5194/esd-14-39-2023.
    (hyperlink)

  9. Chen, Y., Ji, D., Zhang, Q., Moore, J. C., Boucher, O., Jones, A., Lurton, T., Mills, M. J., Niemeier, U., Séférian, R., and Tilmes, S. (2023): Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios Earth Syst. Dynam., 14, 55-79, https://doi.org/10.5194/esd-14-55-2023.
    (hyperlink)

  10. Bednarz, E. M., Visioni, D., Kravitz, B., Jones, A., Haywood, J. M., Richter, J., MacMartin, D. G., and Braesicke, P. (2023), Climate response to off-equatorial stratospheric sulfur injections in three Earth system models - Part 2: Stratospheric and free-tropospheric response Atmos. Chem. Phys., 23, 687-709, https://doi.org/10.5194/acp-23-687-2023.
    (hyperlink)

  11. Visioni, D., Bednarz, E. M., Lee, W. R., Kravitz, B., Jones, A., Haywood, J. M., and MacMartin, D. G. (2023), Climate response to off-equatorial stratospheric sulfur injections in three Earth system models - Part 1: Experimental protocols and surface changes Atmos. Chem. Phys., 23, 663-685,https://doi.org/10.5194/acp-23-663-2023.
    (hyperlink)

  12. (Back to top of section)  |  (Back to top of page)

    2022

  13. Wang, J., Moore, J. C., Zhao, L., Yue, C., and Di, Z. (2022), Regional dynamical and statistical downscaling temperature, humidity and wind speed for the Beijing region under stratospheric aerosol injection geoengineering Earth Syst. Dynam., 13, 1625-1640, https://doi.org/10.5194/esd-13-1625-2022.
    (hyperlink)

  14. Martinez Montero, M., Crucifix, M., Couplet, V., Brede, N., and Botta, N. (2022), SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise, Geoscientific Model Development, 15, 8059-8084, https://doi.org/10.5194/gmd-15-8059-2022.
    (hyperlink)

  15. Xie, M., Moore, J. C., Zhao, L., Wolovick, M., and Muri, H. (2022), Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation, Atmospheric Chemistry and Physics, 22, 4581-4597, https://doi.org/10.5194/acp-22-4581-2022.
    (hyperlink)

  16. Liu, Z., Lang, X., and Jiang, D. (2022), Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective, Atmospheric Chemistry and Physics, 22, 7667-7680, https://doi.org/10.5194/acp-22-7667-2022.
    (hyperlink)

  17. Haywood, J. M., Jones, A., Johnson, B. T., and McFarlane Smith, W. (2022), Assessing the consequences of including aerosol absorption in potential stratospheric aerosol injection climate intervention strategies, Atmospheric Chemistry and Physics, 22, 6135-6150, https://doi.org/10.5194/acp-22-6135-2022.
    (hyperlink)

  18. Quaglia, I., Visioni, D., Pitari, G., and Kravitz, B. (2022), An approach to sulfate geoengineering with surface emissions of carbonyl sulfide, Atmospheric Chemistry and Physics, 22, 5757-5773, https://doi.org/10.5194/acp-22-5757-2022.
    (hyperlink)

  19. Carlson, C.J., Colwell, R., Hossain, M.S., Rahman, M.M., Robock, A., Ryan, S.J., Alam, M.S. and Trisos, C.H., (2022), Solar geoengineering could redistribute malaria risk in developing countries, Nature Communications, 13(1), pp.1-9.
    (hyperlink)

  20. Xie, M., Moore, J. C., Zhao, L., Wolovick, M., and Muri, H. (2022), Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation, Atmospheric Chemistry and Physics, 22, 4581-4597, https://doi.org/10.5194/acp-22-4581-2022.
    (hyperlink)

  21. Tilmes, S., Visioni, D., Jones, A., Haywood, J., Séférian, R., Nabat, P., Boucher, O., Bednarz, E. M., and Niemeier, U. (2022), Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmospheric Chemistry and Physics, 22, 4557-4579, https://doi.org/10.5194/acp-22-4557-2022.
    (hyperlink)

  22. Jones, A., Haywood, J. M., Scaife, A. A., Boucher, O., Henry, M., Kravitz, B., Lurton, T., Nabat, P., Niemeier, U., Séférian, R., Tilmes, S., and Visioni, D. (2022), The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment, Atmospheric Chemistry and Physics, 22, 2999-3016, https://doi.org/10.5194/acp-22-2999-2022.
    (hyperlink)

  23. Weisenstein, D. K., Visioni, D., Franke, H., Niemeier, U., Vattioni, S., Chiodo, G., Peter, T., and Keith, D. W. (2022), An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols, Atmospheric Chemistry and Physics, 22, 2955-2973, https://doi.org/10.5194/acp-22-2955-2022.
    (hyperlink)

  24. (Back to top of section)  |  (Back to top of page)

    2021

  25. Liu, Z., Lang, X., & Jiang, D. (2021), Impact of Stratospheric Aerosol Injection Geoengineering on the Summer Climate over East Asia, Journal of Geophysical Research: Atmospheres, 126, e2021JD035049, https://doi.org/10.1029/2021JD035049.
    (hyperlink)

  26. Yue, C., Schmidt, L. S., Zhao, L., Wolovick, M., Moore, J. C. (2021), Vatnajokull mass loss under solar geoengineering due to the North Atlantic meridional overturning circulation, Earth's Future, 9, e2021EF002052, https://doi.org/10.1029/2021EF002052.
    (hyperlink)

  27. Visioni, D., MacMartin, D. G., Kravitz, B., Boucher, O., Jones, A., Lurton, T., Martine, M., Mills, M. J., Nabat, P., Niemeier, U., Séférian, R., and Tilmes, S. (2021), Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmospheric Chemistry and Physics, 21, 10039-10063, https://doi.org/10.5194/acp-21-10039-2021.
    (hyperlink)

  28. Franke, H., Niemeier, U., and Visioni, D. (2021), Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species, Atmospheric Chemistry and Physics, 21, 8615-8635, https://doi.org/10.5194/acp-21-8615-2021.
    (hyperlink)

  29. Bhowmick, M., Mishra, S. K., Kravitz, B., Sahany, S. and Salunke, P. (2021), Response of the Indian summer monsoon to global warming, solar geoengineering and its termination. Scientific Repport 11, 9791 (2021). https://doi.org/10.1038/s41598-021-89249-6.
    (hyperlink)

  30. Zarnetske, P. L., Gurevitch, J., Franklin, J., Groffman, P. M., Harrison, C. S., Hellmann, J. J., Hoffman, F. M., Kothari, S., Robock, A.,Tilmes, S., Visioni, D., Wu, J., Xia, L., and Yang, C.-E. (2021), Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth, Proceedings of the National Academy of Sciences, Apr 2021, 118 (15) e1921854118, DOI: 10.1073/pnas.1921854118.
    (hyperlink)

  31. Hosea O.P. (2021), Review of Solar Geoengineering for the Developing World: A Discourse on the State of Research and the Effects on Policy and Livelihoods for Africa, African Journal of Inter/Multidisciplinary Studies, 3, 19-30, https://doi.org/10.51415/ajims.v3i1.885.
    (hyperlink)

  32. Kravitz, B., MacMartin, D. G., Visioni, D., Boucher, O., Cole, J. N. S., Haywood, J., Jones, A., Lurton, T., Nabat, P., Niemeier, U., Robock, A., Seferian, R., and Tilmes, S. (2021), Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Chemistry and Physics, 21, 4231-4247, https://doi.org/10.5194/acp-21-4231-2021.
    (hyperlink)

  33. Clarke, L.A.; Taylor, M.A.; Centella-Artola, A.; Williams, M.S..M.; Campbell, J.D.; Bezanilla-Morlot, A.; Stephenson, T.S. (2021), The Caribbean and 1.5 C: Is SRM an Option?, Atmosphere, 12(3), 367, https://doi.org/10.3390/atmos12030367.
    (hyperlink)

  34. Adeniyi, M. O., Bassey, B. E. I. (2021), Precipitation and temperature response to sea salt injection into low marine clouds over West Africa., SN Applied Sciences, 378, 3, https://doi.org/10.1007/s42452-021-04388-9.
    (hyperlink)

  35. Jones, A., Haywood, J. M., Jones, A. C., Tilmes, S., Kravitz, B., and Robock, A. (2021), North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management., Atmospheric Chemistry and Physics, 21, 1287-1304, https://doi.org/10.5194/acp-21-1287-2021.
    (hyperlink)

  36. (Back to top of section)  |  (Back to top of page)

    2020

  37. Kim, D.-H.; Shin, H.-J. (2020), Geoengineering: Impact of Marine Cloud Brightening Control on the Extreme Temperature Change over East Asia., Atmosphere, 11, 1345, doi.org/10.3390/atmos11121345.
    (hyperlink)

  38. Malik, A., Nowack, P. J., Haigh, J. D., Cao, L., Atique, L., and Plancherel, Y. (2020), Tropical Pacific climate variability under solar geoengineering: impacts on ENSO extremes, Atmospheric Chemistry and Physics, 20, 15461-15485, doi.org/10.5194/acp-20-15461-2020.
    (hyperlink)

  39. Xu, Y., Lin, L., Tilmes, S., Dagon, K., Xia, L., Diao, C., Cheng, W., Wang, Z., Simpson, I., and Burnell, L. (2020), Climate engineering to mitigate the projected 21st-century terrestrial drying of the Americas: a direct comparison of carbon capture and sulfur injection, Atmospheric Chemistry and Physics, doi.org/10.5194/esd-11-673-2020.
    (hyperlink)

  40. Yang H., Dobbie S., Ramirez-Villegas J., Chen B. Qiu, S., Ghosh S., Challinor A. (2020), South India projected to be susceptible to high future groundnut failure rates for future climate change and geo-engineered scenarios, Science of The Total Environment, 747, doi:10.1016/j.scitotenv.2020.141240.
    (hyperlink)

  41. Tilmes, S., MacMartin, D. G., Lenaerts, J. T. M., van Kampenhout, L., Muntjewerf, L., Xia, L., Harrison, C. S., Krumhardt, K. M., Mills, M. J., Kravitz, B., and Robock, A. (2020), Reaching 1.5 and 2.0 C global surface temperature targets using stratospheric aerosol geoengineering, Earth Syst. Dynam., 11, 579-601, https://doi.org/10.5194/esd-11-579-2020.
    (hyperlink)

  42. Chen, Y., A. Liu, and J. C. Moore (2020), Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering, Nature Communications, 11, 2430, doi:10.1038/s41467-020-16357-8.
    (hyperlink)

  43. Gertler, C. G., P. A. O'Gorman, B. Kravitz, J. C. Moore, S. J. Phipps, and S. Watanabe (2020), Weakening of the extratropical storm tracks in solar geoengineering scenarios, Geophysical Research Letters, 47, e2020GL087348, doi:10.1029/2020GL087348.
    (hyperlink)

  44. Harding, A. R., K. Ricke, D. Heyen, D. G. MacMartin, and J. Moreno-Cruz (2020), Climate econometric models indicate solar geoengineering would reduce inter-country income inequality, Nature Communications, 11, 227, doi:10.1038/s41467-019-13957-x.
    (hyperlink)

  45. Horowitz, H. M., C. Holmes, A. Wright, T. Sherwen, X. Wang, M. Evans, J. Huang, L. Jaeglé, Q. Chen, S. Zhai, and B. Alexander (2020), Effects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry: Implications for Radiative Forcing, Geophysical Research Letters, 47, e2019GL085838, doi:10.1029/2019GL085838.
    (hyperlink)

  46. Pascoe, C., B. N. Lawrence, E. Guilyardi, M. Juckes, and K. E. Taylor (2020), Designing and Documenting Experiments in CMIP6, Geoscientific Model Development, 13, 2149-2167, https://doi.org/10.5194/gmd-13-2149-2020
    (hyperlink)

  47. Singh, J., S. Sahany, and A. Robock (2020), Can stratospheric geoengineering alleviate global warming-induced changes in deciduous fruit cultivation? The case of Himachal Pradesh (India), Climatic Change, doi:10.1007/s10584-020-02786-3.
    (hyperlink)

  48. (Back to top of section)  |  (Back to top of page)

    2019

  49. Helwegen, K. G., Wieners, C. E., Frank, J. E., and Dijkstra, H. A. (2019), Complementing CO2 emission reduction by solar radiation management might strongly enhance future welfare, Earth System Dynamics, 10, 453-472, https://doi.org/10.5194/esd-10-453-2019.
    (hyperlink)

  50. Bal, P., R. Pathak, S. Kanta Mishra and S. Sahany (2019), Effects of Global Warming and Solar Geoengineering on Precipitation Seasonality, Environmental Research Letters, 14, 034011, doi:10.1088/1748-9326/aafc7d.
    (hyperlink)

  51. Irvine, P., K. Emanuel, J. He, L. W. Horowitz, G. Vecchi, and D. Keith (2019), Halving warming with idealized solar geoengineering moderates key climate hazards, Nature Climate Change, 9, 295-299, doi:10.1038/s41558-019-0398-8.
    (hyperlink)

  52. Lee, H., A. Ekici, J. Tjiputra, H. Muri, S. E. Chadburn, D. M. Lawrence, and J. Schwinger (2019), The Response of Permafrost and High‐Latitude Ecosystems Under Large‐Scale Stratospheric Aerosol Injection and Its Termination, Earth's Future, 7, 605-614, doi:10.1029/2018EF001146.
    (hyperlink)

  53. Low, S. and S. Schäfer (2019), Tools of the trade: practices and politics of researching the future in climate engineering, Sustainability Science, 14, 953–962, doi:10.1007/s11625-019-00692-x.
    (hyperlink)

  54. Moore, J. C., C. Yue, L. Zhao, X. Guo, S. Watanabe, and D. Ji (2019), Greenland ice sheet response to stratospheric aerosol injection geoengineering, Earth's Future, 7, 1451-1463, doi:10.1029/2019EF001393.
    (hyperlink)

  55. Park, C.E., S. J. Jeong, Y. Fan, J. Tjiputra, H. Muri, and C. Zheng (2019), Inequal Responses of Drylands to Radiative Forcing Geoengineering Methods, Geophysical Research Letters, 46, 14011-14020, doi:10.1029/2019GL084210
    (hyperlink)

  56. Plazzotta, M., R. Séférian, and H. Douville (2019), Impact of Solar Radiation Modification on allowable CO2 emissions: what can we learn from multi‐model simulations?, Earth's Future, 7, 664-676, doi:10.1029/2019EF001165.
    (hyperlink)

  57. Winsberg, E. (2019), A modest defense of geoengineering research, Phil. Sci. Archive, 16864.
    (hyperlink)

  58. Zhan, P., W. Zhu, T. Zhang, X. Cui, and N. Li (2019), Impacts of sulfate geoengineering on rice yield in China: results from a multi‐model ensemble, Earth's Future, 7, 395-410, doi:10.1029/2018EF001094.
    (hyperlink)

  59. (Back to top of section)  |  (Back to top of page)

    2018

  60. Eastham, S., D. K. Weisenstein, D. W. Keith, and S. R. H. Barrett (2018), Quantifying the impact of sulfate geoengineering on mortality from air quality and UV-B exposure, Atmospheric Environment, 187, 424-434, doi:10.1016/j.atmosenv.2018.05.047.
    (hyperlink)

  61. Guo, A., J. C. Moore, and D. Ji (2018), Tropical atmospheric circulation response to the G1 sunshade geoengineering radiative forcing experiment, Atmospheric Chemistry and Physics, 18, 8689-8706, doi:10.5194/acp-2018-8689.
    (hyperlink)

  62. Irvine, P. J., D. W. Keith, and J. C. Moore (2018), Brief communication: Understanding solar geoengineering’s potential to limit sea level rise requires attention from cryosphere experts, The Cryosphere, 12, 2501-2513, doi:10.5194/tc-12-2501-2018.
    (hyperlink)

  63. Ji, D., S. Fang, C. Curry, H. Kashimura, S. Watanabe, J. Cole, A. Lenton, H. Muri, B. Kravitz, and J. Moore (2018), Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering, Atmospheric Chemistry and Physics, 18, 10133-10156, doi:10.5194/acp-18-10133-2018.
    (hyperlink)

  64. Jones, A. C., M. K. Hawcroft, J. M. Haywood, A. Jones, X. Guo, and J. C. Moore (2018), Regional climate impacts of stabilizing global warming at 1.5K using solar geoengineering, Earth's Future, 6, 230-251, doi:10.1002/2017EF000720.
    (hyperlink)

  65. Kleinschmitt, C., O. Boucher, and U. Platt (2018), Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2 injection studied with the LMDZ-S3A model, Atmospheric Chemistry and Physics, 18, 2769-2786, doi:10.5194/acp-18-2769-2018.
    (hyperlink)

  66. Kravitz, B., P. J. Rasch, H. Wang, A. Robock, C. Gabriel, O. Boucher, J. N. S. Cole, J. Haywood, D. Ji, A. Jones, A. Lenton, J. C. Moore, H. Muri, U. Niemeier, S. Phipps, H. Schmidt, S. Watanabe, S. Yang, and J.-H. Yoon (2018), The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering, Atmospheric Chemistry and Physics, 18, 13097-13113, doi:10.5194/acp-18-13097-2018.
    (hyperlink)

  67. Lawrence, M. G., S. Schäfer, H. Muri, V. Scott, A. Oschlies, N. E. Vaughan, O. Boucher, H. Schmidt, J. Haywood, and J. Scheffran (2018), Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals, Nature Communications, 9, 3734, doi:10.1038/s41467-018-05938-3.
    (hyperlink)

  68. MacMartin, D. G., K. L. Ricke, and D. W. Keith (2018), Solar Geoengineering as part of an overall strategy for meeting the 1.5°C Paris target, Philosophical Transactions of the Royal Society A, 376, 20160454, doi:10.1098/rsta.2016.0454.
    (hyperlink)

  69. Muri, H., J. Tjiputra, O. H. Otterå, M. Adakudlu, S. K. Lauvset, A. Grini, M. Schulz, U. Niemeier, and J.E. Kristjánsson (2018), Climate response to aerosol geoengineering: A multimethod comparison, Journal of Climate, 31, 6319-6340, doi:10.1175/JCLI-D-17-0620.1.
    (hyperlink)

  70. Plazzotta, M., R. Seéfeérian, H. Douville, B. Kravitz, and J. Tjiputra (2018), Land surface temperature response to stratospheric aerosol injection constrained by major volcanic eruptions, Geophysical Research Letters, 45, 5663-5671, doi:10.1029/2018GL077583.
    (hyperlink)

  71. Proctor, J., S. Hsiang, J. Burney, M. Burke, and W. Schlenker (2018), Estimating global agricultural effects of geoengineering using volcanic eruptions, Nature, 560, 480-483, doi:10.1038/s41586-018-0417-3.
    (hyperlink)

  72. Russotto, R. and T. P. Ackerman (2018), Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble, Atmospheric Chemistry and Physics, 18, 2287-2305, doi:10.5194/acp-2018-2287.
    (hyperlink)

  73. Russotto, R. and T. P. Ackerman (2018), Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction, Atmospheric Chemistry and Physics, 18, 11905-11925, doi:10.5194/acp-2018-11905.
    (hyperlink)

  74. Seneviratne, S. I., S. J. Phipps, A. J. Pitman, A. L. Hirsch, E. L. Davin, M. G. Donat, M. Hirschi, A. Lenton, M. Wilhelm, and B. Kravitz (2018), Land radiative management as contributor to regional-scale climate adaptation and mitigation, Nature Geoscience, 11, 88-96, doi:10.1038/s41561-017-0057-5.
    (hyperlink)

  75. Stjern, C. W., H. Muri, L. Ahlm, O. Boucher, J. N. S. Cole, D. Ji, A. Jones, J. Haywood, B. Kravitz, A. Lenton, J. C. Moore, U. Niemeier, S. J. Phipps, H. Schmidt, S. Watanabe, and J. E. Kristjánsson (2018), Response to marine cloud brightening in a multi-model ensemble, Atmospheric Chemistry and Physics, 18, 621-634, doi:10.5194/acp-18-621-2018.
    (hyperlink)

  76. Sugiyama, M., Y. Arino, T. Kosugi, A. Kurosawa, and S. Watanabe (2018), Next steps in geoengineering scenario research: limited deployment scenarios and beyond, Climate Policy, 18, 681-689, doi:10.1080/14693062.2017.1323721.
    (hyperlink)

  77. Talberg, A., S. Thomas, P. Christoff, and D. Karoly (2018), How geoengineering scenarios frame assumptions and create expectations, Sustainability Science, 13, 1093–1104, doi:10.1007/s11625-018-0527-8.
    (hyperlink)

  78. Trisos, C. H., G. Amatulli, J. Gurevitch, A. Robock, L. Xia, and B. Zambri (2018), Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination, Nature Ecology and Evolution, 2, doi:10.1038/s41559-017-0431-0.
    (hyperlink)

  79. Visioni, D., G. Pitari, P. Tuccella, and G. Curci (2018), Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols, Atmospheric Chemistry and Physics, 18, 2787-2808, doi:10.5194/acp-2018-2787.
    (hyperlink)

  80. Visioni, D., G. Pitari, G. di Genova, S. Tilmes, and I. Cionni (2018), Upper tropospheric ice sensitivity to sulfate geoengineering, Atmospheric Chemistry and Physics, 18, 14867-14887, doi:10.5194/acp-18-14867-2018.
    (hyperlink)

  81. Wang, Q., J. C. Moore, and D. Ji (2018), A statistical examination of the effects of stratospheric sulphate geoengineering on tropical storm genesis, Atmospheric Chemistry and Physics, 18, 9173-9188, doi:10.5194/acp-2018-9173.
    (hyperlink)

  82. Wei, L., D. Ji, C. Miao, H. Muri, and J. C. Moore (2018), Global streamflow and flood response to stratospheric aerosol geoengineering, Atmospheric Chemistry and Physics, 18, 16033-16050, doi:10.5194/acp-18-16033.
    (hyperlink)

  83. (Back to top of section)  |  (Back to top of page)

    2017

  84. Ahlm, L., A. Jones, C. W. Stjern, H. Muri, B. Kravitz, and J. E. Kristjánsson (2017), Marine cloud brightening – as effective without clouds, Atmospheric Chemistry and Physics, 17, 13071-13087, doi:10.5194/acp-17-13071-2017.
    (hyperlink)

  85. Gabriel, C. J., A. Robock, L. Xia, B. Zambri, and B. Kravitz (2017), The G4Foam Experiment: Global climate impacts of regional ocean albedo modification, Atmospheric Chemistry and Physics, 17, 595-613, doi:10.5194/acp-17-595-2017.
    (hyperlink)

  86. Gasparini, B., S. Münch, L. Poncet, M. Feldmann, and U. Lohmann, Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?, Atmospheric Chemistry and Physics, 17, 4871-4885, doi:10.5194/acp-17-4871-2017.
    (hyperlink)

  87. Hong, Y., J. C. Moore, S. Jevrejeva, D. Ji, S. J. Phipps, A. Lenton, S. Tilmes, S. Watanabe, and L. Zhao (2017), Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation, Environmental Research Letters, 12, 034009, doi:10.1088/1748-9326/aa5fb8.
    (hyperlink)

  88. Irvine, P. J., B. Kravitz, M. G. Lawrence, D. Gerten, C. Caminade, S. N. Gosling, E. J. Hendy, B. T. Kassie, W. D. Kissling, H. Muri, A. Oschlies, and Steven J. Smith (2017), Towards a comprehensive climate impacts assessment of solar geoengineering, Earth's Future, 5, 93-106, doi:10.1002/2016EF000389.
    (hyperlink)

  89. Jones, A. C., J. M. Haywood, N. Dunstone, K. Emanuel, M. K. Hawcroft, K. I. Hodges, and A. Jones (2017), Impacts of hemispheric solar geoengineering on tropical cyclone frequency, Nature Communications, 8, 1382, doi:10.1038/s41467-017-01606-0.
    (hyperlink)

  90. Kashimura, H., M. Abe, S. Watanabe, T. Sekiya, D. Ji, J. C. Moore, J. N. S. Cole, and B. Kravitz (2017), Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: Analysis of the Geoengineering Model Intercomparison Project G4 scenario, Atmospheric Chemistry and Physics, 17, 3339-3356, doi:10.5194/acp-17-3339-2017.
    (hyperlink)

  91. Kleinschmitt, C., O. Boucher, S. Bekki, F. Lott, and U. Platt (2017), The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations, Geophysical Model Development, 10, 3359-3378, doi:10.5194/gmd-10-3359-2017.
    (hyperlink)

  92. Laakso, A., H. Korhonen, S. Romakkaniemi, and H. Kokkola, Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas, Atmospheric Chemistry and Physics, 17, 6957-6974, doi:10.5194/10.5914/acp-17-6957-2017.
    (hyperlink)

  93. Niemeier, U. and H. Schmidt (2017), Changing transport processes in the stratosphere by radiative heating of sulfate aerosols, Atmospheric Chemistry and Physics, 7, 14871-14886, doi:10.5194/acp-17-14871-2017.
    (hyperlink)

  94. Smyth, J. E., R. D. Russotto, and T. Storelvmo (2017), Thermodynamic and dynamic responses of the hydrological cycle to solar dimming, Atmospheric Chemistry and Physics, 17, 6439-6453, doi:10.5194/acp-17-6439-2017.
    (hyperlink)

  95. Visioni, D., G. Pitari, and V. Aquila (2017), Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide, Atmospheric Chemistry and Physics, 17, 3879-3889, doi:10.5194/acp-17-3879-2017.
    (hyperlink)

  96. Visioni, D., G. Pitari, V. Aquila, S. Tilmes, I. Cionni, G. Di Genova, and E. Mancini (2017), Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Chemistry and Physics, 17, 11209-11226, doi:10.5194/acp-17-11209-2017.
    (hyperlink)

  97. Xia, L., P. J. Nowack, S. Tilmes, and A. Robock (2017), Impacts of Stratospheric Sulfate Geoengineering on Tropospheric Ozone, Atmospheric Chemistry and Physics, 17, 11913-11928, doi:10.5194/acp-17-11913-2017.
    (hyperlink)

  98. Zhao, L., Y. Yang, W. Cheng, D. Ji, and J. C. Moore, Glacier evolution in high mountain Asia under stratospheric sulfate aerosol injection geoengineering, Atmospheric Chemistry and Physics, 17, 6547-6564, doi:10.5194/acp-17-6547-2017.
    (hyperlink)

  99. (Back to top of section)  |  (Back to top of page)

    2016

  100. Davis, N. A., D. J. Seidel, T. Birner, S. M. Davis, and S. Tilmes (2016), Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations, Atmospheric Chemistry and Physics, 16, 10083-10095, doi:10.5194/acp-16-10083-2016.
    (hyperlink)

  101. Ferraro, A. J. and H. G. Griffiths (2016), Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble, Environmental Research Letters, 11, 034012, doi:10.1088/1748-9326/11/3/034012.
    (hyperlink)

  102. Irvine, P. J., B. Kravitz, M. G. Lawrence, and H. Muri (2016), An overview of the Earth system science of solar geoengineering, WIREs Climate Change, 7, 815-833, doi:10.1002/wcc.423.
    (hyperlink)

  103. Jones, A. C., J. M. Haywood, and A. Jones (2016), Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection, Atmospheric Chemistry and Physics, 16, 2843-2862, doi:10.5194/acp-16-2843-2016.
    (hyperlink)

  104. Lo, Y. T. E., A. J. Charlton-Perez, F. C. Lott, and E. J. Highwood (2016), Detecting sulphate aerosol geoengineering with different methods, Nature Scientific Reports, 6, 39169, doi:10.1038/srep39169.
    (hyperlink)

  105. MacMartin, D. G. and B. Kravitz (2016), Dynamic climate emulators for solar geoengineering, Atmospheric Chemistry and Physics, 16, 15789-15799, doi:10.5194/acp-16-15789-2016.
    (hyperlink)

  106. Nowack, P. J., N. L. Abraham, P. Braesicke, and J. A. Pyle (2016), Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality, Atmospheric Chemistry and Physics, 16, 4191-4203, doi:10.5194/acp-16-4191-2016.
    (hyperlink)

  107. Robock, A. (2016), Albedo enhancement by stratospheric sulfur injections: More research needed, Earth's Future, 4, 644-648, doi:10.1002/2016EF000407.
    (hyperlink)

  108. Xia, L., A. Robock, S. Tilmes, and R. R. Neely (2016), Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate, Atmospheric Chemistry and Physics, 16, 1479-1489, doi:10.5194/acp-16-1479-2016.
    (hyperlink)

  109. Yang, H., S. Dobbie, J. Ramirez-Villegas, K. Feng, A. J. Challinor, B. Chen, Y. Gao, L. Lee, Y. Yin, L. Sun, J. Watson, A.-K. Koehler, T. Fan, and S. Ghosh (2016), Potential negative consequences of geoengineering on crop production: A study of Indian groundnut, Geophysical Research Letters, 43, 11786-11795, doi:10.1002/2016GL071209.
    (hyperlink)

  110. (Back to top of section)  |  (Back to top of page)

    2015

  111. Aaheim, A., B. Romstad, T. Wei, J. E. Kristjánsson, H. Muri, U. Niemeier, and H. Schmidt (2015), An economic evaluation of solar radiation management, Science of The Total Environment, 532, 61-69, doi:10.1016/j.scitotenv.2015.05.106.
    (hyperlink)

  112. Aswathy, V. N., O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas (2015), Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering, Atmospheric Chemistry and Physics, 15, 9593-9610, doi:10.5194/acp-15-9593-2015.
    (hyperlink)

  113. Bürger, G. and U. Cubasch (2015), The detectability of climate engineering, Journal of Geophysical Research, 120, 11404–11418, doi:10.1002/2015JD023954.
    (hyperlink)

  114. Gabriel, C. and A. Robock (2015), Stratospheric geoengineering impacts on El Niño/Southern Oscillation, Atmospheric Chemistry and Physics, 15, 11949-11966, doi:10.5194/acp-15-11949-2015.
    (hyperlink)

  115. Glienke, S., P. J. Irvine, and M. G. Lawrence (2015), The impact of geoengineering on vegetation in experiment G1 of the GeoMIP, Journal of Geophysical Research, 120, 10196-10213, doi:10.1002/2015JD024202.
    (hyperlink)

  116. Kleidon, A., B. Kravitz, and M. Renner (2015), The hydrological sensitivity to global warming and solar geoengineering derived drom thermodynamic constraints, Geophysical Research Letters, 42, 138-144, doi:10.1002/2014GL062589.
    (hyperlink)

  117. Kravitz, B., A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe (2015), The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results, Geoscientific Model Development, 8, 3379-3392, doi:10.5194/gmd-8-3379-2015.
    (hyperlink)

  118. MacMartin, D. G., B. Kravitz, and P. J. Rasch (2015), On solar geoengineering and climate uncertainty, Geophysical Research Letters, 42, 7156-7161, doi:10.1002/2015GL065391.
    (hyperlink)

  119. Moore, J. C., A. Grinsted, X. Guo, X. Yu, S. Jevrejeva, A. Rinke, X. Cui, B. Kravitz, A. Lenton, S. Watanabe, and D. Ji (2015), Atlantic hurricane surge response to geoengineering, Proceedings of the National Academy of Sciences of the United States of America, 112, 13794-13799, doi:10.1073/pnas.1510530112.
    (hyperlink)

  120. Niemeier, U. and C. Timmreck (2015), What is the limit of climate engineering by stratospheric injection of SO2?, Atmospheric Chemistry and Physics, 15, 9129-9141, doi:10.5194/acp-15-9129-2015.
    (hyperlink)

  121. Tilmes, S., M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English (2015), A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models, Geoscientific Model Development, 8, 43-49, doi:10.5194/gmd-8-43-2015.
    (hyperlink)

  122. Yu, X., J. C. Moore, X. Cui, A. Rinke, D. Ji, B. Kravitz, and J.-H. Yoon (2015), Impacts, effectiveness and regional inequalities of the GeoMIP G1 to G4 solar radiation management scenarios, Global and Planetary Change, 129, 10-22, doi:10.1016/j.gloplacha.2015.02.010.
    (hyperlink)

  123. (Back to top of section)  |  (Back to top of page)

    2014

  124. Aquila, V., C. I. Garfinkel, P. A. Newman, L. D. Oman, and D. W. Waugh (2014), Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer, Geophysical Research Letters, 41, 1738-1744, doi:10.1002/2013GL058818.
    (hyperlink)

  125. Berdahl, M., A. Robock, D. Ji, A. Jones, B. Kravitz, J. C. Moore, and S. Watanabe (2014), Arctic cryosphere response in the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 scenarios, Journal of Geophysical Research, 119, 1308-1321, doi:10.1002/2013JD020627.
    (hyperlink)

  126. Curry, C. L., J. Sillmann, D. Bronaugh, K. Alterskjær, J. N. S. Cole, B. Kravitz., J. E. Kristjánsson, H. Muri, U. Niemeier, A. Robock, and S. Tilmes (2014), A multi-model examination of climate extremes in an idealized geoengineering experiment, Journal of Geophysical Research, 119, 3900-3923, doi:10.1002/2013JD020648.
    (hyperlink)

  127. Huneeus, N., O. Boucher, K. Alterskjær, J. N. S. Cole, C. L. Curry, D. Ji, A. Jones, B. Kravitz, J. E. Kristjánsson, J. C. Moore, H. Muri, U. Niemeier, P. J. Rasch, A. Robock, B. Singh, H. Schmidt, M. Schulz, S. Tilmes, S. Watanabe, and J.-H. Yoon (2014), Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2, Journal of Geophysical Research, 119, 5226-5239, doi:10.1002/2013JD021110.
    (hyperlink)

  128. Irvine, P. J., O. Boucher, B. Kravitz, K. Alterskjær, J. N. S. Cole, D. Ji, A. Jones, D. J. Lunt, J. C. Moore, H. Muri, U. Niemeier, A. Robock, B. Singh, S. Tilmes, S. Watanabe, and J.-H. Yoon (2014), Key factors governing uncertainty in the response to sunshade geoengineering from a comparison of the GeoMIP ensemble and a perturbed parameter ensemble, Journal of Geophysical Research, 119, 7946-7962, doi:10.1002/2013JD020716.
    (hyperlink)

  129. Kravitz, B., D. G. MacMartin, A. Robock, P. J. Rasch, K. L. Ricke, J. N. S. Cole, C. L. Curry, P. J. Irvine, D. Ji, D. W. Keith, J. E. Kristjánsson, J. C. Moore, H. Muri, B. Singh, S. Tilmes, S. Watanabe, S. Yang, and J.-H. Yoon (2014), A multi-model assessment of regional climate disparities caused by solar geoengineering, Environmental Research Letters, 9, 074013, doi:10.1088/1748-9326/9/7/074013.
    (hyperlink)

  130. Moore, J. C., A. Rinke, X. Yu, D. Ji, X. Cui, Y. Li, K. Alterskjær, J. E. Kristjánsson, O. Boucher, N. Huneeus, B. Kravitz, A. Robock, U. Niemeier, H. Schmidt, M. Schulz, S. Tilmes, and S. Watanabe (2014), Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario, Journal of Geophysical Research, 119, 567-583, doi:10.1002/2013JD021060.
    (hyperlink)

  131. Pitari, G., V. Aquila, B. Kravitz, A. Robock, S. Watanabe, N. De Luca, G. Di Genova, E. Mancini, S. Tilmes, and I. Cionni (2014), Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP), Journal of Geophysical Research, 119, 2629-2653, doi:10.1002/2013JD020566.
    (hyperlink)

  132. Xia, L., A. Robock. J. N. S. Cole, C. L. Curry, D. Ji, A. Jones, B. Kravitz, J. C. Moore, H. Muri, U. Niemeier, B. Singh, S. Tilmes, S. Watanabe, and J.-H. Yoon (2014), Solar Radiation Management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP), Journal of Geophysical Research, 119, 8695-8711, doi:10.1002/2013JD020630.
    (hyperlink)

  133. (Back to top of section)  |  (Back to top of page)

    2013

  134. Alterskjær, K., J. E. Kristjánsson, O. Boucher, H. Muri, U. Niemeier, H. Schmidt, M. Schulz, and C. Timmreck (2013), Sea salt injections into the low-latitude marine boundary layer: The transient response in three Earth System Models, Journal of Geophysical Research, 118, 12195-12206, doi:10.1002/2013JD020432.
    (hyperlink)

  135. Haywood, J. M., A. Jones, N. Bellouin, and D. Stephenson (2013), Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall, Nature Climate Change, 3, 660-665, doi:10.1038/nclimate1857.
    (hyperlink)

  136. Jones, A., J. M. Haywood, K. Alterskjær, O. Boucher, J. N. S. Cole, C. L. Curry, P. J. Irvine, D. Ji, B. Kravitz, J. E. Kristjánsson, J. C. Moore, U. Niemeier, A. Robock, H. Schmidt, B. Singh, S. Tilmes, S. Watanabe, and J.-H. Yoon (2013), The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP), Journal of Geophysical Research, 118(17), 9743-9752, doi:10.1002/jgrd.50762.
    (hyperlink)

  137. Kravitz, B., K. Caldeira, O. Boucher, A. Robock, P. J. Rasch, K. Alterskjær, D. Bou Karam, J. N. S. Cole, C. L. Curry, J. M. Haywood, P. J. Irvine, D. Ji, A. Jones, J. E. Kristjánsson, D. J. Lunt, J. Moore, U. Niemeier, H. Schmidt, M. Schulz, B. Singh, S. Tilmes, S. Watanabe, S. Yang, and J.-H. Yoon (2013), Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP), Journal of Geophysical Research, 118(15), 8320-8332, doi:10.1002/jgrd.50646.
    (hyperlink)

  138. Kravitz, B., P. M. Forster, A. Jones, A. Robock, K. Alterskjær, O. Boucher, A. K. L. Jenkins, H. Korhonen, J. E. Kristjánsson, H. Muri, U. Niemeier, A.-I. Partanen, P. J. Rasch, H. Wang, and S. Watanabe (2013), Sea spray geoengineering experiments in the Geoengineering Model Intercomparison Project (GeoMIP): Experimental design and preliminary results, Journal of Geophysical Research, 118(19), 11175-11186, doi:10.1002/jgrd.50856.
    (hyperlink)

  139. Kravitz, B., P. J. Rasch, P. M. Forster, T. Andrews, J. N. S. Cole, P. J. Irvine, D. Ji, J. E. Kristjánsson, J. C. Moore, H. Muri, U. Niemeier, A. Robock, B. Singh, S. Tilmes, S. Watanabe, and J.-H. Yoon (2013), An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project (GeoMIP), Journal of Geophysical Research, 118, 13087-13102, doi:10.1002/2013JD020502.
    (hyperlink)

  140. Kravitz, B., A. Robock, P. M. Forster, J. M. Haywood, M. G. Lawrence, and H. Schmidt (2013), An overview of the Geoengineering Model Intercomparison Project (GeoMIP), Journal of Geophysical Research, 118, 13103-13107, doi:10.1002/2013JD020569.
    (hyperlink)

  141. Niemeier, U., H. Schmidt, K. Alterskjær, and J. E. Kristjánsson (2013), Solar irradiance reduction via climate engineering--impact of different techniques on the energy balance and the hydrological cycle, Journal of Geophysical Research, 118, 11905-11917, doi:10.1002/2013JD020445.
    (hyperlink)

  142. Tilmes, S., J. Fasullo, J.-F. Lamarque, D. R. Marsch, M. Mills, K. Alterskjær, O. Boucher, J. N. S. Cole, C. L. Curry, J. M. Haywood, P. J. Irvine, D. Ji, A. Jones, D. B. Karam, B. Kravitz, J. E. Kristjánsson, J. C. Moore, H. O. Muri, U. Niemeier, P. J. Rasch, A. Robock, H. Schmidt, M. Schulz, B. Singh, S. Watanabe, S. Yang, and J.-H. Yoon (2013), The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP), Journal of Geophysical Research, 118(19), 11036-11058, doi:10.1002/jgrd.50868.
    (hyperlink)

  143. (Back to top of section)  |  (Back to top of page)

    2012

  144. Schmidt, H., K. Alterskjær, D. Bou Karam, O. Boucher, A. Jones, J. E. Kristjánsson, U. Niemeier, M. Schulz, A. Aaheim, F. Benduhn, M. Lawrence, and C. Timmreck (2012), Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: Climate responses simulated by four Earth system models, Earth System Dynamics, 3, 63-78, doi:10.5194/esd-3-63-2012.
    (pdf)

  145. (Back to top of section)  |  (Back to top of page)

    2011

  146. Kravitz, B., A. Robock, O. Boucher, H. Schmidt, K. E. Taylor, G. Stenchikov, and M. Schulz (2011), The Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Science Letters, 12, 162-167, doi:10.1002/asl.316.
    (pdf)

  147. (Back to top of section)  |  (Back to top of page)

Technical Reports and other non-reviewed publications

(2023|2022|2021|2020|2019|2018|2017|2016|2015|2014|2013|2012|2011)

    2023

  1. Visioni, D., A. Robock, A. Duffey and I. Quaglia (2022), Process-Level Experiments and Policy-Relevant Scenarios in Future GeoMIP Iterations, Bulletin of the American Meteorological Society, 104, E501-E503, https://doi.org/10.1175/BAMS-D-22-0281.1.
    (hyperlink)

  2. (Back to top of section)  |  (Back to top of page)

    2022

  3. Visioni, D., A. Robock, (2022), Future Geoengineering Scenarios: Balancing Policy Relevance and Scientific Significance, Bulletin of the American Meteorological Society, 103, E817-E820, doi:10.1175/BAMS-D-21-0201.1.
    (hyperlink)

  4. (Back to top of section)  |  (Back to top of page)

    2020

  5. Kravitz, B., A. Robock, and D. G. MacMartin (2020), The road toward process-level understanding of solar geoengineering through a multi-model intercomparison, Bulletin of the American Meteorological Society, 101, E1572-E1575, doi:10.1175/BAMS-D-20-0209.1.
    (hyperlink)

  6. Kravitz, B., A. Robock, and J. C. Moore (2020), New frontiers in geoengineering research, Bulletin of the American Meteorological Society, 101, E87-E89, doi:10.1175/BAMS-D-19-0327.1.
    (hyperlink)

  7. Kravitz, B. (2020), Ten years of GeoMIP, Solar Geoengineering Research Blog.
    (Back to top of section)  |  (Back to top of page)

    2018

  8. Kravitz, B., A. Robock, and U. Lohmann (2018), Modeling the impacts of geoengineering: Report on the Eighth Annual GeoMIP Meeting, 16-17 April 2018, Zürich, Switzerland, Eos, 99, doi:10.1029/2018EO103333.
    (hyperlink)

  9. Kravitz, B., A. Robock, O. Boucher, M. Lawrence, J. C. Moore, U. Niemeier, T. Storelvmo, S. Tilmes, and R. Wood (2018), The Geoengineering Model Intercomparison Project: Introduction to the Second Special Issue, Atmospheric Chemistry and Physics, doi:10.5194/acp-special_issue376-preface.
    (hyperlink)

  10. Pfrommer, T. (2018), A model of Solar Radiation Management Liability, University of Heidelberg Department of Economics Discussion Paper Series, No. 644.
    (hyperlink)

  11. (Back to top of section)  |  (Back to top of page)

    2017

  12. Kravitz, B. and A. Robock (2017), Vetting new models of climate responses to geoengineering: The Seventh Meeting of the Geoengineering Model Intercomparison Project; Newry, Maine, 26 July 2017, Eos, 98, doi:10.1029/2017EO089383.
    (hyperlink)

  13. Kravitz, B., A. Robock, and J. E. Kristjánsson (2016), Understanding How Climate Engineering Can Offset Climate Change: Sixth meeting of the Geoengineering Model Intercomparison Project, Eos, 98, doi:10.1029/2016EO005279.
    (hyperlink)

  14. (Back to top of section)  |  (Back to top of page)

    2016

  15. Kravitz, B., A. Robock, and S. Tilmes (2016), New paths in geoengineering, Eos, 97, doi:10.1029/2016EO045915. Published on 17 February 2016.
    (hyperlink)

  16. (Back to top of section)  |  (Back to top of page)

    2014

  17. Anderson, A. and T. Ault (2014), Temperature and precipitation responses to a stratospheric aerosol geoengineering experiment using the Community Climate System Model 4, Journal of Emerging Investigators.
    (pdf)

  18. Kravitz, B., O. Boucher, and A. Robock (2014), Additional specifications for GeoMIP sea spray geoengineering experiments.
    (docx)
    This document is meant to be a working document, so it may be modified. If you cite it, please include the version you choose to reference.

  19. Kravitz, B., A. Robock, and O. Boucher (2014), Future directions in simulating geoengineering, Eos Transactions of the American Geophysical Union, 95, 280, doi:10.1002/2014EO310010.
    (hyperlink)

  20. (Back to top of section)  |  (Back to top of page)

    2013

  21. Kravitz, B., A. Robock, and P. J. Irvine (2013), Robust results from climate model simulations of geoengineering: GeoMIP 2013, Eos Transactions of the American Geophysical Union, 94, 292, doi:10.1002/2013EO330005.
    (hyperlink)

  22. (Back to top of section)  |  (Back to top of page)

    2012

  23. Kravitz, B., A. Robock, and J. M. Haywood (2012), Summary of the Second GeoMIP Stratospheric Aerosol Geoengineering Workshop, SPARC Newsletter, No. 39.
    (hyperlink)

  24. Kravitz, B., A. Robock, and J. M. Haywood (2012), Progress in climate model simulations of geoengineering: Second GeoMIP stratospheric aerosol geoengineering workshop, Eos Transactions of the American Geophysical Union, 93(35), 340, doi:10.1029/2012EO350009.
    (pdf)

  25. (Back to top of section)  |  (Back to top of page)

    2011

  26. Kravitz, B., A. Robock, O. Boucher, H. Schmidt, and K. E. Taylor (2011), Specifications for GeoMIP experiments G1 through G4. (Frozen: Version 1.0)
    (pdf)
    This document is meant to be a working document, so it may be modified. If you cite it, please include the version you choose to reference.

  27. Robock, A., B. Kravitz, and O. Boucher (2011), Standardizing experiments in geoengineering: GeoMIP stratospheric aerosol geoengineering workshop, Eos Transactions of the American Geophysical Union, 92(23), 197-198, doi:10.1029/2011EO230008.
    (pdf)

  28. (Back to top of section)  |  (Back to top of page)