GeoMIP Special Issue: ACP/GMD

The second GeoMIP special collection is joint between Atmospheric Chemistry and Physics and Geoscientific Model Development.


  1. Kravitz, B., A. Robock, O. Boucher, M. Lawrence, J. C. Moore, U. Niemeier, T. Storelvmo, S. Tilmes, and R. Wood (2018), The Geoengineering Model Intercomparison Project: Introduction to the Second Special Issue, Atmospheric Chemistry and Physics, doi:10.5194/acp-special_issue376-preface.
    (hyperlink)



  2. Ahlm, L., A. Jones, C. W. Stjern, H. Muri, B. Kravitz, and J. E. Kristjánsson (2017), Marine cloud brightening – as effective without clouds, Atmospheric Chemistry and Physics, 17, 13071-13087, doi:10.5194/acp-17-13071-2017.
    (hyperlink)

  3. Aswathy, V. N., O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas (2015), Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering, Atmospheric Chemistry and Physics, 15, 9593-9610, doi:10.5194/acp-15-9593-2015.
    (hyperlink)

  4. Davis, N. A., D. J. Seidel, T. Birner, S. M. Davis, and S. Tilmes (2016), Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations, Atmospheric Chemistry and Physics, 16, 10083-10095, doi:10.5194/acp-16-10083-2016.
    (hyperlink)

  5. Gabriel, C. and A. Robock (2015), Stratospheric geoengineering impacts on El Niño/Southern Oscillation, Atmospheric Chemistry and Physics, 15, 11949-11966, doi:10.5194/acp-15-11949-2015.
    (hyperlink)

  6. Gabriel, C. J., A. Robock, L. Xia, B. Zambri, and B. Kravitz (2017), The G4Foam Experiment: Global climate impacts of regional ocean albedo modification, Atmospheric Chemistry and Physics, 17, 595-613, doi:10.5194/acp-17-595-2017.
    (hyperlink)

  7. Gasparini, B., S. Münch, L. Poncet, M. Feldmann, and U. Lohmann, Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?, Atmospheric Chemistry and Physics, 17, 4871-4885, doi:10.5194/acp-17-4871-2017.
    (hyperlink)

  8. Guo, A., J. C. Moore, and D. Ji (2018), Tropical atmospheric circulation response to the G1 sunshade geoengineering radiative forcing experiment, Atmospheric Chemistry and Physics, 18, 8689-8706, doi:10.5194/acp-2018-8689.
    (hyperlink)

  9. Ji, D., S. Fang, C. Curry, H. Kashimura, S. Watanabe, J. Cole, A. Lenton, H. Muri, B. Kravitz, and J. Moore (2018), Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering, Atmospheric Chemistry and Physics, 18, 10133-10156, doi:10.5194/acp-18-10133-2018.
    (hyperlink)

  10. Jones, A. C., J. M. Haywood, and A. Jones (2016), Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection, Atmospheric Chemistry and Physics, 16, 2843-2862, doi:10.5194/acp-16-2843-2016.
    (hyperlink)

  11. Kashimura, H., M. Abe, S. Watanabe, T. Sekiya, D. Ji, J. C. Moore, J. N. S. Cole, and B. Kravitz (2017), Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: Analysis of the Geoengineering Model Intercomparison Project G4 scenario, Atmospheric Chemistry and Physics, 17, 3339-3356, doi:10.5194/acp-17-3339-2017.
    (hyperlink)

  12. Kleinschmitt, C., O. Boucher, S. Bekki, F. Lott, and U. Platt (2017), The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations, Geophysical Model Development, 10, 3359-3378, doi:10.5194/gmd-10-3359-2017.
    (hyperlink)

  13. Kleinschmitt, C., O. Boucher, and U. Platt (2018), Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2 injection studied with the LMDZ-S3A model, Atmospheric Chemistry and Physics, 18, 2769-2786, doi:10.5194/acp-18-2769-2018.
    (hyperlink)

  14. Kravitz, B., A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe (2015), The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results, Geoscientific Model Development, 8, 3379-3392, doi:10.5194/gmd-8-3379-2015.
    (hyperlink)

  15. Kravitz, B., P. J. Rasch, H. Wang, A. Robock, C. Gabriel, O. Boucher, J. N. S. Cole, J. Haywood, D. Ji, A. Jones, A. Lenton, J. C. Moore, H. Muri, U. Niemeier, S. Phipps, H. Schmidt, S. Watanabe, S. Yang, and J.-H. Yoon (2018), The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering, Atmospheric Chemistry and Physics, 18, 13097-13113, doi:10.5194/acp-18-13097-2018.
    (hyperlink)

  16. Laakso, A., H. Korhonen, S. Romakkaniemi, and H. Kokkola, Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas, Atmospheric Chemistry and Physics, 17, 6957-6974, doi:10.5194/10.5914/acp-17-6957-2017.
    (hyperlink)

  17. MacMartin, D. G. and B. Kravitz (2016), Dynamic climate emulators for solar geoengineering, Atmospheric Chemistry and Physics, 16, 15789-15799, doi:10.5194/acp-16-15789-2016.
    (hyperlink)

  18. Niemeier, U. and C. Timmreck (2015), What is the limit of climate engineering by stratospheric injection of SO2?, Atmospheric Chemistry and Physics, 15, 9129-9141, doi:10.5194/acp-15-9129-2015.
    (hyperlink)

  19. Niemeier, U. and H. Schmidt (2017), Changing transport processes in the stratosphere by radiative heating of sulfate aerosols, Atmospheric Chemistry and Physics, 7, 14871-14886, doi:10.5194/acp-17-14871-2017.
    (hyperlink)

  20. Nowack, P. J., N. L. Abraham, P. Braesicke, and J. A. Pyle (2016), Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality, Atmospheric Chemistry and Physics, 16, 4191-4203, doi:10.5194/acp-16-4191-2016.
    (hyperlink)

  21. Russotto, R. and T. P. Ackerman (2018), Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble, Atmospheric Chemistry and Physics, 18, 2287-2305, doi:10.5194/acp-2018-2287.
    (hyperlink)

  22. Russotto, R. and T. P. Ackerman (2018), Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction, Atmospheric Chemistry and Physics, 18, 11905-11925, doi:10.5194/acp-2018-11905.
    (hyperlink)

  23. Smyth, J. E., R. D. Russotto, and T. Storelvmo (2017), Thermodynamic and dynamic responses of the hydrological cycle to solar dimming, Atmospheric Chemistry and Physics, 17, 6439-6453, doi:10.5194/acp-17-6439-2017.
    (hyperlink)

  24. Stjern, C. W., H. Muri, L. Ahlm, O. Boucher, J. N. S. Cole, D. Ji, A. Jones, J. Haywood, B. Kravitz, A. Lenton, J. C. Moore, U. Niemeier, S. J. Phipps, H. Schmidt, S. Watanabe, and J. E. Kristjánsson (2018), Response to marine cloud brightening in a multi-model ensemble, Atmospheric Chemistry and Physics, 18, 621-634, doi:10.5194/acp-18-621-2018.
    (hyperlink)

  25. Tilmes, S., M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English (2015), A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models, Geoscientific Model Development, 8, 43-49, doi:10.5194/gmd-8-43-2015.
    (hyperlink)

  26. Xia, L., A. Robock, S. Tilmes, and R. R. Neely (2016), Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate, Atmospheric Chemistry and Physics, 16, 1479-1489, doi:10.5194/acp-16-1479-2016.
    (hyperlink)

  27. Visioni, D., G. Pitari, and V. Aquila (2017), Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide, Atmospheric Chemistry and Physics, 17, 3879-3889, doi:10.5194/acp-17-3879-2017.
    (hyperlink)

  28. Visioni, D., G. Pitari, V. Aquila, S. Tilmes, I. Cionni, G. Di Genova, and E. Mancini (2017), Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Chemistry and Physics, 17, 11209-11226, doi:10.5194/acp-17-11209-2017.
    (hyperlink)

  29. Visioni, D., G. Pitari, P. Tuccella, and G. Curci (2018), Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols, Atmospheric Chemistry and Physics, 18, 2787-2808, doi:10.5194/acp-2018-2787.
    (hyperlink)

  30. Visioni, D., G. Pitari, and G. di Genova (2018), Upper tropospheric ice sensitivity to sulfate geoengineering, Atmospheric Chemistry and Physics, submitted.
    (hyperlink)

  31. Wang, Q., J. C. Moore, and D. Ji (2018), A statistical examination of the effects of stratospheric sulphate geoengineering on tropical storm genesis, Atmospheric Chemistry and Physics, 18, 9173-9188, doi:10.5194/acp-2018-9173.
    (hyperlink)

  32. Wei, L., D. Ji, C. Miao, and J. C. Moore (2018), Global streamflow and flood response to stratospheric aerosol geoengineering, Atmospheric Chemistry and Physics, submitted.
    (hyperlink)

  33. Xia, L., P. J. Nowack, S. Tilmes, and A. Robock (2017), Impacts of Stratospheric Sulfate Geoengineering on Tropospheric Ozone, Atmospheric Chemistry and Physics, 17, 11913-11928, doi:10.5194/acp-17-11913-2017.
    (hyperlink)

  34. Zhao, L., Y. Yang, W. Cheng, D. Ji, and J. C. Moore, Glacier evolution in high mountain Asia under stratospheric sulfate aerosol injection geoengineering, Atmospheric Chemistry and Physics, 17, 6547-6564, doi:10.5194/acp-17-6547-2017.
    (hyperlink)